compressible boundary layer
简明释义
可压缩流体边界层
英英释义
例句
1.The transition from laminar to turbulent flow in a compressible boundary layer 可压边界层 can significantly affect performance.
在compressible boundary layer 可压边界层中,从层流到湍流的过渡会显著影响性能。
2.The study of the flow over an airfoil requires understanding the behavior of the compressible boundary layer 可压边界层 at high speeds.
对翼型上流动的研究需要理解在高速下的compressible boundary layer 可压边界层的行为。
3.Research on compressible boundary layers 可压边界层 is essential for improving aerodynamic efficiency.
对compressible boundary layers 可压边界层的研究对于提高空气动力学效率至关重要。
4.Engineers must account for the effects of the compressible boundary layer 可压边界层 when designing high-speed jets.
工程师在设计高速喷气机时必须考虑compressible boundary layer 可压边界层的影响。
5.In supersonic flight, the compressible boundary layer 可压边界层 plays a crucial role in determining drag characteristics.
在超音速飞行中,compressible boundary layer 可压边界层在决定阻力特性方面起着至关重要的作用。
作文
In the study of fluid dynamics, one of the crucial concepts is the compressible boundary layer. This term refers to a region in a fluid flow where the effects of compressibility are significant. In simpler terms, it describes the behavior of fluids, particularly gases, when they move at high speeds, causing changes in density and pressure within the boundary layer adjacent to a solid surface. Understanding the compressible boundary layer is essential for engineers and scientists who work with high-speed aircraft, rockets, and other vehicles that operate in gaseous environments at varying speeds.The compressible boundary layer is primarily characterized by the variations in velocity and pressure that occur as the fluid flows over a surface. When an object moves through a fluid, the fluid particles closest to the surface experience friction, which slows them down compared to the faster-moving particles further away. This creates a gradient of velocity in the boundary layer. When the flow is compressible, such as in high-speed flight, the density of the fluid can change significantly. As the speed of the object increases, the pressure decreases, leading to a thinner boundary layer compared to incompressible flow conditions.One of the most important aspects of studying the compressible boundary layer is its impact on drag and lift forces acting on an object. In aerodynamics, understanding how these forces interact with the boundary layer can help in designing more efficient aircraft. For instance, if the boundary layer separates from the surface of the wing, it can lead to increased drag and loss of lift, which can be detrimental to flight performance. Engineers must account for the effects of compressibility to optimize the shape and surface characteristics of wings and fuselages, particularly for supersonic and hypersonic vehicles.Additionally, the compressible boundary layer plays a role in heat transfer processes. As the fluid flows over a heated surface, the temperature distribution within the boundary layer can affect the overall thermal performance of the system. In high-speed applications, the temperature can rise significantly due to compression and friction, which can lead to material degradation if not properly managed. Therefore, understanding the dynamics of the compressible boundary layer is critical for thermal management in aerospace engineering.Research into the compressible boundary layer also involves advanced computational fluid dynamics (CFD) simulations and experimental studies. These methods allow researchers to predict how changes in design or operating conditions will affect the behavior of the boundary layer. By analyzing these factors, engineers can make informed decisions that enhance vehicle performance, safety, and efficiency.In conclusion, the concept of the compressible boundary layer is vital for understanding fluid flow around objects moving at high speeds. Its implications for drag, lift, and heat transfer are essential considerations in the design and operation of various aerospace vehicles. As technology advances, continued research in this area will undoubtedly lead to more efficient and effective designs, pushing the boundaries of what is possible in flight and propulsion systems.
在流体动力学的研究中,一个关键概念是可压缩边界层。这个术语指的是流体流动中的一个区域,在这个区域内,压缩性效应是显著的。简单来说,它描述了流体,特别是气体,在高速移动时的行为,这会导致固体表面邻近的边界层内密度和压力的变化。理解可压缩边界层对从事高速度飞机、火箭及其他在不同速度下操作的气体环境中的车辆的工程师和科学家来说至关重要。可压缩边界层的主要特征是随着流体在表面上流动而发生的速度和压力变化。当一个物体在流体中移动时,靠近表面的流体颗粒由于摩擦而减速,与远离表面的较快流体颗粒相比。这在边界层中形成了速度梯度。当流动是可压缩的,例如在高速飞行中,流体的密度可以发生显著变化。随着物体速度的增加,压力降低,与不可压缩流动条件相比,边界层变得更薄。研究可压缩边界层的最重要方面之一是它对作用在物体上的阻力和升力的影响。在空气动力学中,理解这些力如何与边界层相互作用可以帮助设计更高效的飞机。例如,如果边界层从机翼表面分离,可能会导致阻力增加和升力损失,这对飞行性能是有害的。工程师必须考虑压缩性的影响,以优化机翼和机身的形状和表面特性,特别是对于超音速和高超音速车辆。此外,可压缩边界层在热传递过程中也起着重要作用。当流体在加热表面上流动时,边界层内的温度分布会影响系统的整体热性能。在高速应用中,由于压缩和摩擦,温度可能显著上升,如果管理不当,可能导致材料降解。因此,理解可压缩边界层的动态对于航天工程中的热管理至关重要。对可压缩边界层的研究还涉及先进的计算流体动力学(CFD)模拟和实验研究。这些方法使研究人员能够预测设计或操作条件的变化将如何影响边界层的行为。通过分析这些因素,工程师可以做出明智的决策,从而提高车辆的性能、安全性和效率。总之,可压缩边界层的概念对于理解高速运动物体周围的流体流动至关重要。它对阻力、升力和热传递的影响是各种航空航天车辆设计和操作中的重要考虑因素。随着技术的进步,继续在这一领域的研究无疑将导致更高效和有效的设计,推动飞行和推进系统可能性的边界。
相关单词