coefficient of cubic expansion

简明释义

体膨胀系数

英英释义

The coefficient of cubic expansion is a measure of the fractional change in volume of a material for a unit change in temperature.

体积膨胀系数是指材料在单位温度变化下,体积的相对变化量。

例句

1.The coefficient of cubic expansion 立方膨胀系数 of metals is generally higher than that of ceramics, making them more prone to expansion.

金属的coefficient of cubic expansion 立方膨胀系数通常高于陶瓷,这使得它们更容易膨胀。

2.The engineer calculated the coefficient of cubic expansion 立方膨胀系数 of the material to ensure it would not warp under temperature changes.

工程师计算了材料的coefficient of cubic expansion 立方膨胀系数以确保在温度变化下不会变形。

3.Understanding the coefficient of cubic expansion 立方膨胀系数 is crucial when designing structures that will face extreme temperature variations.

理解coefficient of cubic expansion 立方膨胀系数在设计将面临极端温度变化的结构时至关重要。

4.Different materials have different coefficients of cubic expansion 立方膨胀系数, which affects their suitability for specific applications.

不同材料具有不同的coefficients of cubic expansion 立方膨胀系数,这影响它们在特定应用中的适用性。

5.In the manufacturing process, knowing the coefficient of cubic expansion 立方膨胀系数 helps in selecting the right materials for thermal insulation.

在制造过程中,了解coefficient of cubic expansion 立方膨胀系数有助于选择合适的热绝缘材料。

作文

The concept of the coefficient of cubic expansion is fundamental in understanding how materials respond to changes in temperature. When we heat a substance, its particles gain energy and tend to move apart, which leads to an increase in volume. This phenomenon is particularly important in fields such as engineering, physics, and materials science, where precise calculations are crucial for the integrity and functionality of structures and devices.To elaborate, the coefficient of cubic expansion is defined as the ratio of the change in volume to the original volume of a material per degree change in temperature. This coefficient varies among different materials; for instance, metals typically have a higher coefficient of cubic expansion compared to ceramics or glass. This means that when subjected to the same temperature increase, metals will expand more than ceramics or glass.Understanding the coefficient of cubic expansion is essential for engineers when designing structures that will be exposed to varying temperatures. For example, bridges made of steel must account for thermal expansion to avoid structural failure. If the coefficient of cubic expansion is not considered, the materials could expand too much during hot weather, leading to buckling or cracking.Moreover, the coefficient of cubic expansion plays a significant role in everyday applications. Consider a simple scenario where a glass jar is filled with a hot liquid. As the liquid heats up, it expands, and if the jar does not accommodate this expansion due to its own lower coefficient of cubic expansion, it may shatter. Therefore, knowing the coefficient of cubic expansion helps manufacturers create products that can withstand thermal stress.In addition to practical applications, the coefficient of cubic expansion also finds relevance in scientific research. For instance, astrophysicists study the expansion of the universe, which relates to the idea of expansion at a cosmic scale. Understanding how different materials behave under temperature changes allows scientists to make accurate models and predictions about various phenomena in the universe.In conclusion, the coefficient of cubic expansion is a critical parameter that influences a wide range of applications from engineering to everyday life. By understanding how materials expand with temperature changes, we can design safer structures, create more reliable products, and deepen our scientific knowledge. The implications of this coefficient extend beyond theoretical concepts, impacting real-world scenarios where temperature fluctuations are inevitable. Thus, mastering the understanding of the coefficient of cubic expansion is not only beneficial but necessary for anyone involved in material sciences or engineering disciplines.

立方体膨胀系数的概念在理解材料如何响应温度变化方面是基础。当我们加热物质时,其粒子获得能量并趋向于分开,这导致体积增加。这种现象在工程、物理和材料科学等领域尤为重要,在这些领域中,精确的计算对于结构和设备的完整性和功能至关重要。进一步说,立方体膨胀系数被定义为单位温度变化下材料体积变化与原始体积的比率。这个系数在不同材料之间有所不同;例如,金属通常具有比陶瓷或玻璃更高的立方体膨胀系数。这意味着在相同的温度升高情况下,金属的膨胀程度将大于陶瓷或玻璃。理解立方体膨胀系数对工程师在设计将暴露于不同温度的结构时至关重要。例如,钢制桥梁必须考虑热膨胀,以避免结构故障。如果不考虑立方体膨胀系数,材料在炎热天气中可能会过度膨胀,从而导致翘曲或开裂。此外,立方体膨胀系数在日常应用中也发挥着重要作用。考虑一个简单的场景,一个玻璃罐装满了热液体。当液体加热时,它会膨胀,如果罐子由于其自身较低的立方体膨胀系数而无法容纳这种膨胀,它可能会破裂。因此,了解立方体膨胀系数有助于制造商创造能够承受热应力的产品。除了实际应用,立方体膨胀系数在科学研究中也有相关性。例如,天体物理学家研究宇宙的膨胀,这与宇宙规模上的膨胀概念有关。理解不同材料在温度变化下的行为使科学家能够准确地建模和预测宇宙中的各种现象。总之,立方体膨胀系数是影响从工程到日常生活的广泛应用的关键参数。通过理解材料如何随温度变化而膨胀,我们可以设计出更安全的结构,创造出更可靠的产品,并加深我们的科学知识。这个系数的影响超越了理论概念,影响着温度波动不可避免的现实场景。因此,掌握立方体膨胀系数的理解不仅有益,而且对任何参与材料科学或工程学科的人来说都是必要的。

相关单词

cubic

cubic详解:怎么读、什么意思、用法

expansion

expansion详解:怎么读、什么意思、用法