conformal

简明释义

[kənˈfɔːməl][kənˈfɔrməl]

adj. [数] 保角的;共形的;正形的

英英释义

Conformal refers to a property of a mapping that preserves angles locally, meaning that it maintains the shape of small figures.

共形指的是一种映射的性质,它在局部保持角度,即保持小图形的形状。

In mathematics, a conformal transformation is a function that preserves the form of geometric figures while allowing for scaling.

在数学中,共形变换是一种保留几何图形形式的函数,同时允许缩放。

Conformal mapping is often used in complex analysis and fluid dynamics to simplify problems by transforming them into a more manageable form.

共形映射常用于复分析和流体动力学,通过将问题转化为更易处理的形式来简化问题。

单词用法

conformal mapping

保角映射;共形映象

conformal transformation

保角变换,保角映射;保形变换,共形变换

同义词

similar

相似的

The two shapes are conformal, meaning they maintain their angles and shape.

这两个形状是共形的,意味着它们保持角度和形状。

反义词

non-conformal

非一致的

The non-conformal mapping does not preserve angles.

非一致映射不保持角度。

distorted

扭曲的

The distorted image lost its original proportions.

扭曲的图像失去了原来的比例。

例句

1.The major target of my paper is to research the columnar conformal microstrip antenna at the wavelength of 8mm.

本文的主要工作是对8毫米波段的圆柱共形微带天线的设计研究。

2.Thus, conformal mapping is merely used as a bridge to allow the designer to specify the velocity distribution.

因此,形映射只是作为桥梁,让设计师指明速度分布。

3.The characteristics of millimeter microstrip antenna conformal taper in the far-zone were studied.

对与锥体共形的毫米波微带天线的远区场特性进行了初步的研究。

4.An introduction is given to the conformal symmetry, quantum conformal field theory and phase transition.

本文讨论了共形对称性,量子共形对称理论以及相变现象。

5.Second, to describe, for the first time in a book, recent results of Smirnov in conformal invariance .

来描述,这在一本书的第一时间,最近的结果斯米尔诺夫在形不变性。

6.Amethod for conformal design of integrated impellers is proposed.

提出了整体叶轮一体化保形设计的方法。

7.This is typically achieved using fixed, circular collimators that produce sharp-edged, highly conformal treatment beams.

实现这种效果具代表性地是采用固定、圆形的准直器,它能够产生边缘锐利、高适形的治疗射束。

8.The method of conformal mapping is a tool to achieve this solution.

保角映射法就是一种寻求这个解的工具。

9.In fluid dynamics, conformal 保角的 mappings help in solving potential flow problems.

在流体动力学中,保角的映射有助于解决势流问题。

10.Many GPS systems rely on conformal 保角的 projections to ensure accuracy.

许多GPS系统依赖于保角的投影以确保准确性。

11.The conformal 保角的 transformation allows for the accurate representation of shapes.

保角的变换允许对形状进行准确表示。

12.The conformal 保角的 mapping technique is essential in complex analysis.

在复分析中,保角的映射技术是必不可少的。

13.In cartography, a conformal 保角的 projection preserves angles, making it useful for navigation.

在制图中,保角的投影保持角度,这使得它在导航中非常有用。

作文

In the field of mathematics and physics, the term conformal refers to a property of certain transformations that preserve angles. This concept is particularly significant in complex analysis and geometry. A mapping is said to be conformal if it maintains the angle between curves at a given point, even though it may alter distances. This characteristic makes conformal mappings extremely valuable in various applications, including fluid dynamics, aerodynamics, and computer graphics.One of the most famous examples of conformal mappings is the use of the Riemann mapping theorem, which states that any simply connected open subset of the complex plane can be mapped conformally onto the unit disk. This theorem is foundational in complex analysis, as it allows mathematicians to study complex functions by transforming them into a more manageable form.In practical applications, conformal mappings are used in cartography to represent the curved surface of the Earth on flat maps. For instance, the Mercator projection is a well-known conformal map that preserves angles, making it useful for navigation. However, it distorts areas, especially near the poles, which is a trade-off that cartographers must consider when choosing a mapping technique.Another area where conformal mappings play a crucial role is in fluid flow problems. In these scenarios, the flow of an incompressible fluid can often be analyzed using conformal techniques. By transforming the complex geometry of the flow domain into a simpler one, engineers can apply mathematical models to predict fluid behavior accurately.Furthermore, in computer graphics, conformal mapping is employed in texture mapping and mesh generation. When creating realistic images, it is essential to apply textures to surfaces without distortion. Using conformal mappings ensures that angles are preserved, thus maintaining the visual integrity of the textures applied to 3D models.The importance of conformal mappings extends into the realm of theoretical physics as well. In string theory, for example, conformal invariance is a critical aspect that helps physicists understand the behavior of strings in different dimensions. The mathematical framework of conformal field theory provides tools to analyze quantum field theories, revealing deeper insights into the nature of particles and forces.In summary, the term conformal encompasses a wide range of applications across various scientific disciplines. From preserving angles in mathematical transformations to its relevance in practical fields like cartography, fluid dynamics, and computer graphics, the concept of conformal mappings is fundamental to both theoretical and applied sciences. Understanding this term not only enriches one’s knowledge of mathematics but also highlights the interconnectedness of different scientific domains. As we continue to explore and apply the principles of conformal mappings, we uncover new ways to solve complex problems and advance our understanding of the world around us.

在数学和物理领域,术语conformal指的是某些变换的性质,这些变换保持角度。这一概念在复分析和几何学中尤为重要。如果一个映射在给定点保持曲线之间的角度,即使它可能改变距离,那么这个映射就被称为conformal。这一特性使得conformal映射在流体动力学、空气动力学和计算机图形学等多个应用中极具价值。conformal映射最著名的例子之一是使用黎曼映射定理,该定理指出任何简单连通的复平面开子集都可以被映射到单位圆盘上。该定理是复分析中的基础,因为它允许数学家通过将复杂函数转换为更易于处理的形式来研究它们。在实际应用中,conformal映射用于地图制图,将地球的曲面表示为平面地图。例如,麦卡托投影是一种著名的conformal地图,它保持角度,使其在导航中非常有用。然而,它扭曲了区域,特别是在极地附近,这是制图师在选择映射技术时必须考虑的权衡。另一个conformal映射发挥关键作用的领域是流体流动问题。在这些情况下,通常可以使用conformal技术分析不可压缩流体的流动。通过将流动域的复杂几何形状转化为更简单的形式,工程师可以应用数学模型准确预测流体行为。此外,在计算机图形学中,conformal映射被用于纹理映射和网格生成。在创建逼真图像时,重要的是将纹理应用于表面而不产生失真。使用conformal映射可以确保角度被保持,从而维护应用于3D模型的纹理的视觉完整性。conformal映射的重要性还扩展到理论物理领域。例如,在弦理论中,conformal不变性是一个关键方面,有助于物理学家理解弦在不同维度下的行为。conformal场论的数学框架提供了分析量子场论的工具,揭示了粒子和力的本质的更深层次的见解。总之,术语conformal涵盖了各个科学学科中广泛的应用。从数学变换中保持角度到其在地图制图、流体动力学和计算机图形学等实际领域的相关性,conformal映射的概念对理论和应用科学都是基础。理解这个术语不仅丰富了人们对数学的知识,还突显了不同科学领域之间的相互联系。随着我们继续探索和应用conformal映射的原理,我们揭示了解决复杂问题的新方法,并推动我们对周围世界的理解。