matrix
简明释义
n. 矩阵;模型;社会环境;(骨头、牙齿和指甲等身体器官的)母体,基质;脉石;矩阵转接电路;线路网,道路网;精细材料;交叉结构
复 数 m a t r i c e s 或 m a t r i x e s
英英释义
单词用法
转移距阵;转换矩阵 | |
刚度矩阵;劲度矩阵 |
同义词
网格 | 数据以网格格式组织。 | ||
框架 | 我们需要一个框架来支持我们的项目。 | ||
环境 | 研究是在城市环境中进行的。 | ||
结构 | 该组织的结构相当复杂。 |
反义词
例句
1.That matrix has properties that vary in different locations in the body, but basically it's a highly hydrated or water-rich gel.
这种基质在体内不同的位置有不同的性质,但基本上它是一种高度水合或富水的凝胶。
2.Maintain an SOA enablement security decision matrix.
维护SOA支持安全决策表。
3.This is a very simple matrix.
这是非常简单的表。
4.So, what's interesting about this matrix?
那么,这个矩阵里有趣的是什么?
5.Also, it does not implement many matrix functions.
还有,它没有实现许多矩阵函数。
6.This is to define the matrix.
这是定义矩阵。
7.This way, you get a new 4x4 matrix as a result.
采用这种方法,就可以得到一个新的4x4矩阵。
8.The data was organized in a matrix 矩阵 to facilitate analysis.
数据被组织在一个矩阵 矩阵中以便于分析。
9.In mathematics, a matrix 矩阵 is often used to represent linear transformations.
在数学中,矩阵 矩阵通常用来表示线性变换。
10.The matrix 矩阵 multiplication is not commutative.
矩阵 矩阵乘法不是交换的。
11.The company's structure can be visualized as a matrix 矩阵 of teams and projects.
公司的结构可以被视为一个团队和项目的矩阵 矩阵。
12.We need to calculate the determinant of this matrix 矩阵 for our calculations.
我们需要计算这个矩阵 矩阵的行列式以进行我们的计算。
作文
In the realm of mathematics and computer science, the term matrix (矩阵) holds significant importance. A matrix (矩阵) is essentially a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. This concept is not only foundational in linear algebra but also plays a crucial role in various fields such as physics, economics, and engineering. Understanding the properties and operations associated with matrix (矩阵) can greatly enhance one’s analytical skills and problem-solving abilities.One of the primary uses of a matrix (矩阵) is to represent systems of linear equations. For instance, if we have a system of equations with multiple variables, we can express these equations in a compact form using a matrix (矩阵). This allows for easier manipulation and solution of the equations through operations such as addition, subtraction, and multiplication of matrices (矩阵). The ability to perform these operations efficiently is essential for anyone studying advanced mathematics or related fields.Moreover, matrices (矩阵) are extensively used in computer graphics. They help in transforming images by scaling, rotating, or translating them on the screen. For example, when you rotate an object in a video game, the underlying calculations often involve matrices (矩阵) to ensure that the rotation appears smooth and realistic. This application of matrix (矩阵) theory showcases its relevance beyond theoretical mathematics and into practical, real-world scenarios.In addition to their mathematical applications, matrices (矩阵) also find their way into data analysis and machine learning. In these fields, data sets are often represented as matrices (矩阵), where each row corresponds to an observation and each column represents a feature. This representation allows for the application of various algorithms that can analyze and extract meaningful insights from the data. For instance, techniques such as principal component analysis (PCA) rely heavily on matrix (矩阵) operations to reduce the dimensionality of data while preserving its variance. This is particularly useful in large datasets where visualization and interpretation become challenging.Furthermore, the concept of a matrix (矩阵) extends into the realm of social sciences as well. In sociology, researchers may use matrices (矩阵) to analyze relationships between different groups or individuals. By creating a matrix (矩阵) that represents interactions or connections, sociologists can uncover patterns and trends that may not be immediately apparent. This highlights the versatility of the matrix (矩阵) concept across various disciplines.In conclusion, the term matrix (矩阵) encompasses much more than just a mathematical construct; it is a powerful tool that transcends boundaries between different fields of study. Whether it is in solving equations, rendering graphics, analyzing data, or exploring social dynamics, matrices (矩阵) provide a framework for understanding complex relationships and phenomena. As we continue to advance in technology and science, the significance of the matrix (矩阵) will undoubtedly grow, making it an essential concept for future generations to master.
在数学和计算机科学领域,术语matrix(矩阵)具有重要意义。matrix(矩阵)本质上是一个数字、符号或表达式的矩形数组,按行和列排列。这个概念不仅是线性代数的基础,而且在物理学、经济学和工程等多个领域中也发挥着至关重要的作用。理解与matrix(矩阵)相关的性质和运算可以大大增强个人的分析能力和解决问题的能力。matrix(矩阵)的主要用途之一是表示线性方程组。例如,如果我们有一个包含多个变量的方程组,我们可以使用matrix(矩阵)以紧凑的形式表达这些方程。这使得通过加法、减法和乘法等运算对方程进行更容易的操作成为可能。有效地执行这些运算对于任何学习高级数学或相关领域的人来说都是至关重要的。此外,matrices(矩阵)在计算机图形学中被广泛使用。它们通过缩放、旋转或平移图像来帮助图像变换。例如,当您在视频游戏中旋转物体时,底层计算通常涉及matrices(矩阵),以确保旋转看起来平滑而真实。matrix(矩阵)理论的这一应用展示了其超越理论数学并进入实际世界场景的相关性。除了数学应用外,matrices(矩阵)还进入数据分析和机器学习领域。在这些领域中,数据集通常表示为matrices(矩阵),每一行对应于一个观察,每一列代表一个特征。这种表示方式允许应用各种算法来分析和提取数据中的有意义的见解。例如,主成分分析(PCA)等技术在很大程度上依赖于matrix(矩阵)运算,以在保留方差的同时降低数据的维度。这在大型数据集中尤其有用,因为可视化和解释变得具有挑战性。此外,matrix(矩阵)概念还扩展到社会科学领域。在社会学中,研究人员可能会使用matrices(矩阵)来分析不同群体或个体之间的关系。通过创建一个表示互动或连接的matrix(矩阵),社会学家可以发现可能不立即显现的模式和趋势。这突显了matrix(矩阵)概念在多个学科中的多样性。总之,术语matrix(矩阵)不仅仅是一个数学构造;它是一个强大的工具,跨越不同学科的界限。无论是在求解方程、渲染图形、分析数据还是探索社会动态方面,matrices(矩阵)都提供了一个理解复杂关系和现象的框架。随着我们在技术和科学上的不断进步,matrix(矩阵)的重要性无疑会增加,使其成为未来几代人必须掌握的基本概念。