tringle
简明释义
n. 挂帘子的横杆;帐子的支撑杆
英英释义
A tringle is a small, triangular-shaped device or tool used in various applications, often in construction or crafting. | Tringle是一个小型的三角形设备或工具,通常用于各种应用,常见于建筑或手工制作。 |
单词用法
灯光的三角形排列 | |
沿着...轻快地走 | |
三角声 | |
三角形状 |
同义词
三角形 | 这个物体的形状是一个三角形。 | ||
三重的 | 他在比赛中获得了三重胜利。 |
反义词
脱离 | The team decided to disengage from the project due to lack of resources. | 由于缺乏资源,团队决定脱离这个项目。 | |
分离 | Please detach the document from the email before sending it. | 请在发送之前将文档从电子邮件中分离。 |
例句
1.In this paper the rational convex combination of two operator is constructed in standard tringle.
本文构造了标准三角形上两个算子的有理凸组合逼近并推广到任意三角形上。
2.In this paper the rational convex combination of two operator is constructed in standard tringle.
本文构造了标准三角形上两个算子的有理凸组合逼近并推广到任意三角形上。
3.To display her collection, she arranged the items on a tringle stand.
为了展示她的收藏品,她把物品放在一个三角架支架上。
4.The artist created a beautiful sculpture using a tringle as a base.
艺术家用一个三角架作为基础创作了一个美丽的雕塑。
5.The photographer adjusted the tringle to get the perfect angle for the shot.
摄影师调整了三角架以获得完美的拍摄角度。
6.During the camping trip, they set up a tent with a tringle for stability.
在露营旅行中,他们用一个三角架搭建帐篷以保持稳定。
7.She used a tringle to hang the curtains in her living room.
她用一个三角架来挂客厅的窗帘。
作文
In the realm of geometry, shapes play a crucial role in our understanding of space and form. One of the most fundamental shapes is the triangle, which can be referred to by the term tringle. A tringle is defined as a three-sided polygon, characterized by its three edges and three vertices. The study of tringles is essential not only in mathematics but also in various fields such as architecture, engineering, and art. Triangles can be classified into different types based on their angles and side lengths. For instance, an equilateral tringle has all three sides of equal length, making it a symbol of symmetry and balance. An isosceles tringle, on the other hand, has two sides that are equal, while a scalene tringle has all sides of different lengths. Understanding these classifications helps in solving geometric problems and in applying these concepts to real-world situations.One of the most fascinating aspects of tringles is their properties. The sum of the interior angles of any tringle is always 180 degrees. This property is fundamental in various applications, from calculating distances to designing structures. For example, engineers often use tringles in truss designs, where the stability of a structure can be enhanced by incorporating triangular shapes. This is because tringles distribute weight evenly and provide strength, making them an ideal choice for constructing bridges and buildings.Additionally, the tringle is a vital component in the study of trigonometry, which deals with the relationships between the angles and sides of tringles. Trigonometric functions such as sine, cosine, and tangent are derived from the properties of tringles, and they play a significant role in various scientific fields, including physics, engineering, and computer science. For example, when analyzing waves or oscillations, scientists often rely on the principles of tringles to model and predict behaviors.In art, tringles have also been used to create visually appealing compositions. Artists often employ triangular arrangements to draw the viewer’s eye and create a sense of harmony within a piece. The use of tringles in design can evoke feelings of stability and order, making them a popular choice among architects and graphic designers alike.Moreover, tringles appear in nature as well. From the formation of crystals to the structure of certain plants, the presence of tringles is evident all around us. This natural occurrence of tringles highlights their importance and relevance beyond mathematical concepts.In conclusion, the concept of tringles extends far beyond basic geometry. They are integral to numerous disciplines, influencing everything from construction to art. By understanding the properties and applications of tringles, we can appreciate their significance in both theoretical and practical contexts. Whether we are solving mathematical problems, designing innovative structures, or creating beautiful works of art, the tringle remains a fundamental shape that continues to inspire and inform our understanding of the world around us.
在几何学的领域中,形状在我们理解空间和形式方面起着至关重要的作用。最基本的形状之一是三角形,可以用术语tringle来指代。tringle被定义为一种三边形多边形,具有三个边和三个顶点。学习tringles不仅在数学中至关重要,而且在建筑、工程和艺术等多个领域也同样重要。三角形可以根据其角度和边长进行分类。例如,等边tringle的三条边长度相等,是对称和平衡的象征。另一方面,等腰tringle有两条边相等,而不等边tringle的三条边则各不相同。理解这些分类有助于解决几何问题,并将这些概念应用于现实世界的情况。tringles最迷人的方面之一是它们的性质。任何tringle的内角和总是180度。这一性质在各种应用中至关重要,从计算距离到设计结构。例如,工程师通常在桁架设计中使用tringles,通过结合三角形来增强结构的稳定性。这是因为tringles均匀分配重量并提供强度,使其成为建造桥梁和建筑物的理想选择。此外,tringle是三角函数研究中的一个重要组成部分,三角函数涉及tringles的角度和边之间的关系。正弦、余弦和正切等三角函数源自tringles的性质,它们在物理、工程和计算机科学等多个科学领域中发挥着重要作用。例如,在分析波动或振荡时,科学家们常常依赖tringles的原理来建模和预测行为。在艺术中,tringles也被用来创建视觉上令人愉悦的构图。艺术家们常常采用三角形的排列来吸引观众的目光,并在作品中创造和谐感。tringles的使用可以激发稳定和秩序的感觉,使其成为建筑师和图形设计师的热门选择。此外,tringles在自然界中也有出现。从晶体的形成到某些植物的结构,tringles的存在在我们周围显而易见。这种自然界中tringles的出现突显了它们的重要性和相关性,超越了数学概念。总之,tringles的概念远远超出了基础几何学。它们是众多学科不可或缺的一部分,影响着从建筑到艺术的方方面面。通过理解tringles的性质和应用,我们可以欣赏它们在理论和实践背景中的重要性。无论我们是在解决数学问题、设计创新结构,还是创造美丽的艺术作品,tringle始终是一个基本形状,继续激励和影响我们对周围世界的理解。