electron volt
简明释义
电子伏特
英英释义
A unit of energy equal to the amount of kinetic energy gained by a single electron when it is accelerated through an electric potential difference of one volt. | 一个能量单位,等于单个电子在通过一个电压差为一伏特时所获得的动能。 |
例句
1.The ionization energy of hydrogen is about 13.6 electron volts (电子伏特).
氢的电离能约为13.6电子伏特(电子伏特)。
2.The energy of a single photon in the visible spectrum can be measured in electron volts (电子伏特).
可见光谱中单个光子的能量可以用电子伏特(电子伏特)来测量。
3.In particle physics, the mass of particles is often expressed in electron volts (电子伏特) using the famous equation E=mc².
在粒子物理学中,粒子的质量通常用电子伏特(电子伏特)表示,使用著名的方程E=mc²。
4.A common unit for measuring the energy of electrons is the electron volt (电子伏特).
测量电子能量的常用单位是电子伏特(电子伏特)。
5.Accelerators can boost particles to energies of several hundred electron volts (电子伏特).
加速器可以将粒子加速到几百电子伏特(电子伏特)的能量。
作文
The concept of the electron volt is fundamental in the field of physics, particularly in the study of atomic and subatomic particles. An electron volt (abbreviated as eV) is defined as the amount of kinetic energy gained by a single electron when it is accelerated through an electric potential difference of one volt. This unit of energy is commonly used in particle physics and quantum mechanics due to the extremely small scale of energies involved at these levels. To better understand the significance of the electron volt, let’s consider its practical applications. For instance, in the realm of semiconductors, the energy band gap— which is the energy required to move an electron from the valence band to the conduction band—is often measured in electron volts. Silicon, a widely used semiconductor material, has a band gap of about 1.1 eV. This means that an energy input of at least 1.1 electron volts is necessary to excite an electron sufficiently to contribute to electrical conduction. In the context of nuclear physics, the electron volt plays a crucial role as well. The binding energy of nucleons within an atomic nucleus is often expressed in MeV (mega-electron volts), where 1 MeV equals 1 million electron volts. This highlights how the energies involved in nuclear reactions are significantly higher than those typically encountered in atomic processes. For example, the energy released during radioactive decay can be on the order of several MeV, illustrating the power and scale of nuclear interactions. Furthermore, when discussing high-energy particle collisions, such as those occurring in particle accelerators like the Large Hadron Collider (LHC), we often refer to energies in the range of tera-electron volts (TeV). One TeV equals one trillion electron volts, showcasing the vast energy scales that physicists work with when probing the fundamental constituents of matter. The discovery of the Higgs boson, for example, was made possible by colliding particles at energies exceeding 125 GeV (giga-electron volts), or 125 billion electron volts. The electron volt also serves as a convenient unit when discussing the energy of photons, especially in the electromagnetic spectrum. For example, visible light photons have energies ranging from about 1.65 eV (red light) to 3.1 eV (violet light). This allows scientists to relate the energy of light directly to its wavelength, using the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is the wavelength. In summary, the electron volt is a critical unit of measurement in modern physics, providing a means to quantify energy at the microscopic level. Its applications span various fields, including semiconductor technology, nuclear physics, and particle physics, making it an essential concept for anyone studying the physical sciences. Understanding the electron volt enables researchers and students alike to grasp the energy scales relevant to their work and contributes to advancements in technology and our understanding of the universe.
电子伏特(electron volt)的概念在物理学领域中是基础性的,尤其是在原子和亚原子粒子的研究中。电子伏特(缩写为eV)被定义为当一个电子在电势差为一伏特的情况下加速时所获得的动能。这种能量单位在粒子物理学和量子力学中被广泛使用,因为在这些层面上涉及的能量极其微小。为了更好地理解electron volt的重要性,让我们考虑它的实际应用。例如,在半导体领域,能带间隙——即将电子从价带移动到导带所需的能量——通常以electron volts为单位进行测量。硅是一种广泛使用的半导体材料,其能带间隙约为1.1 eV。这意味着至少需要1.1electron volts的能量输入才能足够激发电子以贡献于电导。在核物理学的背景下,electron volt同样起着关键作用。原子核内核子之间的结合能通常用MeV(百万电子伏特)表示,其中1 MeV等于100万electron volts。这突显了核反应中涉及的能量远高于原子过程中的典型能量。例如,放射性衰变过程中释放的能量可以达到几个MeV,展示了核相互作用的强度和规模。此外,当讨论高能粒子碰撞时,例如在大型强子对撞机(LHC)等粒子加速器中发生的碰撞,我们通常提到的能量范围在太电子伏特(TeV)级别。1 TeV等于1万亿electron volts,展示了物理学家在探究物质基本构成时所处理的庞大能量规模。例如,希格斯玻色子的发现就是通过在超过125 GeV(十亿电子伏特)或1250亿electron volts的能量下碰撞粒子而实现的。electron volt还作为讨论光子能量的方便单位,特别是在电磁波谱中。例如,可见光光子的能量范围从约1.65 eV(红光)到3.1 eV(紫光)。这使科学家能够直接将光的能量与其波长联系起来,利用公式E = hc/λ,其中E是能量,h是普朗克常数,c是光速,λ是波长。总之,electron volt是现代物理学中一个关键的计量单位,为量化微观层面的能量提供了手段。它的应用跨越多个领域,包括半导体技术、核物理学和粒子物理学,使其成为任何学习物理科学的人必不可少的概念。理解electron volt使研究人员和学生能够掌握与他们工作相关的能量规模,并促进技术进步和我们对宇宙的理解。
相关单词