collision mean free path

简明释义

碰撞平均自由程

英英释义

The average distance a particle travels between successive collisions with other particles in a medium.

粒子在介质中连续碰撞之间平均行驶的距离。

例句

1.In gas dynamics, the collision mean free path 碰撞平均自由程 is crucial for understanding how gases behave under different temperatures.

在气体动力学中,碰撞平均自由程 collision mean free path 对于理解气体在不同温度下的行为至关重要。

2.The collision mean free path 碰撞平均自由程 can be calculated using the density and temperature of the gas.

可以通过气体的密度和温度来计算碰撞平均自由程 collision mean free path

3.In a vacuum, the collision mean free path 碰撞平均自由程 increases significantly due to the lack of particles.

在真空中,由于缺乏粒子,碰撞平均自由程 collision mean free path 显著增加。

4.Understanding the collision mean free path 碰撞平均自由程 helps in designing better chemical reactors.

理解碰撞平均自由程 collision mean free path 有助于设计更好的化学反应器。

5.The collision mean free path 碰撞平均自由程 is shorter in denser gases compared to lighter ones.

在较密集的气体中,碰撞平均自由程 collision mean free path 比较轻的气体要短。

作文

The concept of collision mean free path is fundamental in the study of kinetic theory and statistical mechanics. In simple terms, the collision mean free path refers to the average distance a particle travels before it collides with another particle. This concept is crucial for understanding the behavior of gases and other systems at the microscopic level. When we talk about particles, we often refer to atoms or molecules that are in constant motion. These particles collide with each other frequently, and the collision mean free path helps us quantify how far a particle can travel on average without experiencing such a collision.In the realm of gases, the collision mean free path is influenced by several factors, including the size of the particles, their density, and the temperature of the gas. For instance, in a gas with larger molecules, the collision mean free path will be shorter because the likelihood of collisions increases. Conversely, in a less dense gas where particles are more spaced out, the collision mean free path can be significantly longer. Temperature also plays a vital role; as the temperature increases, the kinetic energy of the particles rises, allowing them to move faster and potentially increasing the collision mean free path due to reduced collision frequency.Understanding the collision mean free path is essential for various applications in science and engineering. For example, in the field of aerodynamics, knowing how far air molecules travel before colliding with an object can help engineers design better aircraft. Similarly, in the field of semiconductor manufacturing, controlling the collision mean free path of electrons can influence the efficiency of electronic devices.Moreover, the collision mean free path is not limited to gases; it also applies to liquids and solids, although the calculations become more complex. In liquids, particles are closer together than in gases, leading to a shorter collision mean free path. In solids, the concept can be applied to understand how defects or dislocations within a material affect its properties.One interesting application of the collision mean free path is in the field of astrophysics. In stars, the behavior of photons as they travel through dense plasma can be described using this concept. The collision mean free path determines how far a photon can travel before interacting with matter, influencing the star's luminosity and temperature.In conclusion, the collision mean free path is a vital concept that bridges the gap between microscopic particle interactions and macroscopic phenomena. By understanding this concept, we gain insights into the nature of matter and the principles governing the behavior of gases, liquids, and solids. Whether in theoretical research or practical applications, the collision mean free path remains a key factor in many scientific fields, illustrating the intricate dance of particles that compose our universe.

“碰撞平均自由程”这一概念在动理论和统计力学的研究中至关重要。简单来说,碰撞平均自由程是指一个粒子在与另一个粒子发生碰撞之前平均旅行的距离。这个概念对于理解气体及其他系统在微观层面的行为至关重要。当我们谈论粒子时,通常是指处于不断运动状态的原子或分子。这些粒子频繁地相互碰撞,而碰撞平均自由程帮助我们量化一个粒子在经历这样的碰撞之前可以平均行驶多远。在气体领域,碰撞平均自由程受多种因素的影响,包括粒子的大小、密度和气体的温度。例如,在一个分子较大的气体中,碰撞平均自由程会更短,因为碰撞的可能性增加。相反,在一个密度较低的气体中,粒子之间的间距更大,碰撞平均自由程可能会显著增加。温度也起着至关重要的作用;随着温度的升高,粒子的动能增加,使它们移动得更快,从而可能由于碰撞频率降低而增加碰撞平均自由程。理解碰撞平均自由程对科学和工程的各种应用至关重要。例如,在空气动力学领域,了解空气分子在与物体碰撞之前可以旅行多远,可以帮助工程师设计更好的飞机。同样,在半导体制造领域,控制电子的碰撞平均自由程可以影响电子设备的效率。此外,碰撞平均自由程不仅限于气体;它也适用于液体和固体,尽管计算变得更加复杂。在液体中,粒子比在气体中更靠近,这导致碰撞平均自由程更短。在固体中,这个概念可以用来理解材料内部缺陷或位错如何影响其性能。碰撞平均自由程的一个有趣应用是在天体物理学领域。在恒星中,光子在稠密等离子体中传播的行为可以用这一概念来描述。碰撞平均自由程决定了光子在与物质相互作用之前可以传播多远,从而影响恒星的光度和温度。总之,碰撞平均自由程是一个重要的概念,它架起了微观粒子相互作用与宏观现象之间的桥梁。通过理解这一概念,我们获得了对物质性质以及支配气体、液体和固体行为的原则的深入见解。无论是在理论研究还是实际应用中,碰撞平均自由程仍然是许多科学领域的关键因素,展示了构成我们宇宙的粒子之间复杂的舞蹈。

相关单词

collision

collision详解:怎么读、什么意思、用法