chromatin
简明释义
n. 核染色质;核染质
英英释义
单词用法
真染色质 | |
异染色质 | |
染色质可及性 | |
染色质修饰 | |
染色质结构 | |
染色质与DNA | |
染色质动态 | |
与染色质相关的蛋白质 | |
染色质纤维 | |
染色质凝聚 |
同义词
染色体 | Chromatin is a complex of DNA and proteins found in the nucleus of eukaryotic cells. | 染色质是存在于真核细胞核中的DNA和蛋白质的复合物。 |
反义词
例句
1.Comet assay and sperm chromatin structure assay showed no significant change.
彗星实验和染色质结构分析则无明显变化。
2.Before synapsis, chromatin fibers condense at the chromosome axes forming the chromomeres.
在联会发生前,染色质纤维凝聚在轴成分上呈现出染色粒。
3.The second purpose is to change chromatin structure and, hence, the physical interactions between histones and DNA.
第二个目的是为了改变染色质结构以及组蛋白与DNA之间的物理相互作用。
4.Description: This is the website of Chromatin Network.
网站描述:这是染色质网络的网站。
5.Embryo cells are small, chromatin is dense, have already differentiation on epidermis, cortex and central cylinder.
胚已经具有了表皮、皮层、中柱的分化,细胞小,染色质浓厚。
6.At each location on the sequence, we can measure all these different attributes of chromatin.
在序列的每个位置上,我们都可以测量染色质的这些不同属性。
7.Our data provide new insights into the function of histone methylation and chromatin organization in genome function.
我们的数据提供了一个在基因组功能中组蛋白甲基化和染色质组织的新观点。
8.Nucleosome is the basic unit of chromatin.
核小体是染色质的基本单位。
9.Researchers used microscopy to visualize the chromatin 染色质 organization within the nucleus.
研究人员使用显微镜可视化细胞核内的染色质组织。
10.The accessibility of chromatin 染色质 plays a crucial role in the regulation of transcription.
染色质的可及性在转录调控中起着至关重要的作用。
11.During the cell cycle, the structure of chromatin 染色质 changes from a compact form to a more relaxed state.
在细胞周期中,染色质的结构从紧凑的形式变化为更放松的状态。
12.When cells divide, chromatin 染色质 condenses to form visible chromosomes.
当细胞分裂时,染色质凝缩形成可见的染色体。
13.The study focused on how modifications to chromatin 染色质 can influence gene expression.
这项研究集中于如何对染色质的修饰可以影响基因表达。
作文
Chromatin is a complex of DNA and proteins found in the nucleus of eukaryotic cells. It plays a crucial role in packaging DNA into a more compact, dense shape, which is essential for cell division and gene regulation. The structure of chromatin (染色质) can be broadly categorized into two types: euchromatin and heterochromatin. Euchromatin is less condensed and is associated with active gene transcription, while heterochromatin is more tightly packed and typically contains genes that are not actively expressed. Understanding the function and structure of chromatin (染色质) is vital for comprehending how genetic information is organized and accessed within the cell. During the cell cycle, chromatin (染色质) undergoes significant changes. In interphase, when the cell is not dividing, chromatin (染色质) exists in a relaxed state, allowing for the transcription of genes necessary for the cell's functions. However, as the cell prepares to divide, chromatin (染色质) condenses into visible chromosomes, making it easier for the genetic material to be evenly distributed to daughter cells.The regulation of chromatin (染色质) structure is also essential for gene expression. Various chemical modifications to the histone proteins around which DNA is wrapped can influence whether specific genes are turned on or off. For instance, the addition of acetyl groups to histones can lead to a more open chromatin (染色质) structure, promoting gene activation, while methylation can lead to tighter packing, silencing gene expression.Research on chromatin (染色质) has expanded significantly in recent years, revealing its importance not just in normal cellular processes but also in diseases such as cancer. Abnormalities in chromatin (染色质) structure and function can lead to misregulation of gene expression, contributing to tumorigenesis. Thus, understanding chromatin (染色质) dynamics offers potential therapeutic avenues for targeting these changes in cancer cells.In conclusion, chromatin (染色质) is a fundamental component of eukaryotic cells, integral to the organization and regulation of genetic material. Its dynamic nature allows for the precise control of gene expression, which is essential for proper cellular function and development. Continued research into chromatin (染色质) will undoubtedly enhance our understanding of genetics and open new doors for medical advancements. As we delve deeper into the complexities of chromatin (染色质), we uncover the intricate layers of life at the molecular level, highlighting the elegance and sophistication of biological systems.
染色质是存在于真核细胞核中的DNA和蛋白质的复合物。它在将DNA包装成更紧凑、密集的形状中发挥着至关重要的作用,这对于细胞分裂和基因调控是必不可少的。染色质的结构可以大致分为两种类型:常染色质和异染色质。常染色质较不凝聚,与活跃的基因转录相关,而异染色质则更紧密地打包,通常包含未被积极表达的基因。理解染色质的功能和结构对于理解遗传信息在细胞内如何组织和访问至关重要。在细胞周期中,染色质经历显著变化。在间期,即细胞不分裂时,染色质处于放松状态,允许转录细胞功能所需的基因。然而,当细胞准备分裂时,染色质凝缩成可见的染色体,使遗传物质更容易均匀分配到子细胞中。染色质结构的调控对于基因表达也至关重要。围绕DNA缠绕的组蛋白的各种化学修饰可以影响特定基因的开启或关闭。例如,向组蛋白添加乙酰基可以导致更开放的染色质结构,促进基因激活,而甲基化则可能导致更紧密的包装,抑制基因表达。近年来对染色质的研究显著增加,揭示了它不仅在正常细胞过程中重要,而且在癌症等疾病中也至关重要。染色质结构和功能的异常可能导致基因表达的错误调控,从而促进肿瘤发生。因此,理解染色质动态变化为针对癌细胞中这些变化的潜在治疗途径提供了机会。总之,染色质是真核细胞的基本组成部分,对于遗传物质的组织和调控至关重要。它的动态特性允许精确控制基因表达,这对于细胞的正常功能和发育是必不可少的。对染色质的持续研究无疑将增强我们对遗传学的理解,并为医学进步开辟新的道路。当我们深入探讨染色质的复杂性时,我们揭示了分子水平上生命的精妙层面,突显了生物系统的优雅和复杂性。