microchemical
简明释义
英[ˌmaɪkroʊˈkɛmɪkəl]美[ˌmaɪkroʊˈkɛmɪkəl]
微量化学的
英英释义
单词用法
同义词
反义词
宏观化学 | Macrochemical processes are often used in large-scale manufacturing. | 宏观化学过程通常用于大规模生产。 | |
大宗化学 | Bulk chemicals are produced in large quantities and have a wide range of applications. | 大宗化学品以大批量生产,具有广泛的应用。 |
例句
1.In the process of microchemical engineering, the research on the transfer phenomena on the surface concerning micrometer-size particle and droplet is of important basic significance.
在微化工过程中,微米量级的颗粒和液滴表面传递现象的研究具有重要的基础意义。
2.In the process of microchemical engineering, the research on the transfer phenomena on the surface concerning micrometer-size particle and droplet is of important basic significance.
在微化工过程中,微米量级的颗粒和液滴表面传递现象的研究具有重要的基础意义。
3.The inspection methods of paint evidence in forensic science, in terms of the appearance test, microchemical method, composition test and etc.
法庭科学中塑料物证的检验方法有很多,一般可通过外观检验、微量化学法、塑料成分检验等来进行。
4.Using microchemical 微化学的 sensors, scientists can monitor environmental changes with high precision.
科学家可以使用微化学的传感器以高精度监测环境变化。
5.In the field of pharmaceuticals, microchemical 微化学的 analysis is crucial for ensuring drug purity.
在制药领域,微化学的分析对于确保药物纯度至关重要。
6.The microchemical 微化学的 analysis revealed unexpected compounds in the soil sample.
对土壤样本的微化学的分析揭示了意想不到的化合物。
7.The research team developed a new method for detecting trace amounts of pollutants using microchemical 微化学的 techniques.
研究团队开发了一种新方法,通过使用微化学的技术来检测微量污染物。
8.The microchemical 微化学的 properties of the material were studied to improve its performance in electronic devices.
对材料的微化学的特性进行了研究,以提高其在电子设备中的性能。
作文
In recent years, the field of science has made significant strides in understanding the intricate details of matter at a smaller scale. One of the most fascinating areas of study is that of 微化学. This term refers to the chemistry that deals with the study and manipulation of chemical substances at the microscopic level. The implications of 微化学 are vast and varied, influencing numerous fields such as materials science, biology, and nanotechnology. The concept of 微化学 is not just limited to theoretical studies; it has practical applications that have revolutionized many industries. For instance, in pharmaceuticals, 微化学 plays a crucial role in drug development. By examining how drugs interact at the molecular level, scientists can design more effective medications with fewer side effects. This precision is essential in treating complex diseases where traditional methods may fail. Moreover, 微化学 is instrumental in the development of new materials. Researchers are able to engineer materials at the atomic or molecular level, leading to the creation of stronger, lighter, and more durable products. For example, carbon nanotubes, which are derived from 微化学 processes, have remarkable strength and conductivity, making them ideal for use in electronics and structural materials. In the realm of biology, 微化学 allows for a deeper understanding of cellular processes. By studying the chemical reactions that occur within cells, scientists can gain insights into how diseases develop and progress. This knowledge is crucial for developing targeted therapies and improving diagnostic techniques. For instance, the use of 微化学 techniques has led to advancements in cancer research, where understanding the microenvironment of tumors can lead to more effective treatment strategies. Furthermore, the environmental impact of 微化学 cannot be overlooked. As we face global challenges such as pollution and climate change, 微化学 offers solutions through the development of sustainable materials and processes. For example, researchers are exploring ways to use 微化学 to create biodegradable plastics that can reduce waste and minimize environmental harm. Despite its many benefits, the study of 微化学 also poses ethical questions. As we delve deeper into manipulating matter at such a small scale, we must consider the potential consequences of our actions. Issues such as bioethics, environmental safety, and the implications of synthetic biology must be addressed to ensure responsible innovation. In conclusion, 微化学 represents a frontier in scientific research that holds tremendous potential for advancing technology, healthcare, and environmental sustainability. As we continue to explore this field, it is essential to balance innovation with ethical considerations. The future of 微化学 is bright, and its contributions will undoubtedly shape the world in ways we are only beginning to understand.
近年来,科学领域在理解物质微观细节方面取得了显著进展。一个最引人入胜的研究领域是微化学。这个术语指的是研究和操控微观水平上化学物质的化学。微化学的影响广泛而多样,影响着材料科学、生物学和纳米技术等多个领域。微化学的概念不仅限于理论研究;它在许多行业的实际应用已经革命化。例如,在制药行业,微化学在药物开发中起着关键作用。通过研究药物在分子水平上的相互作用,科学家可以设计出更有效且副作用更少的药物。这种精确性在治疗复杂疾病时至关重要,因为传统方法可能失败。此外,微化学在新材料的开发中也至关重要。研究人员能够在原子或分子水平上工程材料,从而创造出更强、更轻、更耐用的产品。例如,碳纳米管源自于微化学过程,具有卓越的强度和导电性,使其成为电子产品和结构材料的理想选择。在生物学领域,微化学使我们对细胞过程有了更深刻的理解。通过研究细胞内发生的化学反应,科学家可以深入了解疾病是如何发展和进展的。这一知识对于开发靶向疗法和改善诊断技术至关重要。例如,微化学技术的使用促进了癌症研究的进展,通过理解肿瘤的微环境,可以制定更有效的治疗策略。此外,微化学的环境影响不容忽视。面对污染和气候变化等全球挑战,微化学通过开发可持续材料和工艺提供了解决方案。例如,研究人员正在探索如何利用微化学创造可降解塑料,以减少废物并最小化环境危害。尽管有许多好处,研究微化学也提出了伦理问题。随着我们深入操控如此小规模的物质,我们必须考虑我们行为的潜在后果。生物伦理、环境安全和合成生物学的影响等问题必须得到解决,以确保负责任的创新。总之,微化学代表了科学研究的一个前沿,蕴含着推动技术、医疗和环境可持续发展的巨大潜力。随着我们继续探索这一领域,平衡创新与伦理考量至关重要。微化学的未来光明,其贡献无疑将以我们尚未完全理解的方式塑造世界。