calculus
简明释义
n. 微积分;(数,逻)演算(法),计算(法);(医)(尤指肾或胆囊的)结石,石
复 数 c a l c u l i 或 c a l c u l u s e s
英英释义
单词用法
积分学 | |
微分;微分学 |
同义词
分析 | The calculus course covers both differential and integral calculus. | 这个微积分课程涵盖了微分和积分学。 |
反义词
例句
1.But, calculus, really, is about studying functions.
但是微积分,主要是学习函数的。
2.He was a brilliant mathematician; he was one of the inventers of Calculus.
他也是一位杰出的数学家,微积分的发明者之一。
3.This is the book [which] Newton's calculus was introduced [by the book] into China.
③正是通过这本书,使牛顿的微积分介绍到中国来。
4.But the calculus for politicians has suddenly shifted.
但是,政客们的演算突然发生了转变。
5.Maria Droujkova is a founder of Natural Math, and has taught basic calculus concepts to 5-year-olds.
玛丽亚·德鲁伊科娃是“自然数学”的创始人之一,她曾向5岁的儿童教授基础微积分概念。
那微积分呢?
7.Because what matters is where they are in the power calculus.
因为重要的是,他们在整个权力体系中居于怎样的位置。
8.In college, I struggled with calculus 微积分, but eventually I found a great tutor.
在大学里,我在微积分上挣扎,但最终我找到了一个很好的辅导老师。
9.Many engineering programs require students to take calculus 微积分 as part of their curriculum.
许多工程专业要求学生将微积分作为课程的一部分。
10.Understanding calculus 微积分 is essential for advanced physics courses.
理解微积分对于高级物理课程至关重要。
11.I used calculus 微积分 to calculate the area under the curve for my statistics project.
我使用微积分计算了我统计项目中曲线下的面积。
12.The concept of limits is fundamental in calculus 微积分 and helps in understanding derivatives.
极限的概念在微积分中是基础,有助于理解导数。
作文
Calculus is a branch of mathematics that deals with the study of change and motion. It is a fundamental tool used in various fields, including physics, engineering, economics, and biology. The term 'calculus' originates from the Latin word 'calculus', which means 'small stone', a reference to the counting stones used in ancient times for calculations. Understanding calculus (微积分) is essential for anyone pursuing a career in science or technology.One of the primary concepts in calculus (微积分) is the derivative, which represents the rate of change of a function. For instance, if we consider the position of a car over time, the derivative will give us the speed of the car at any given moment. This concept is crucial in understanding how things move and change in our world. Similarly, the integral, another key concept in calculus (微积分), allows us to calculate the area under a curve, which can represent total distance traveled, among other things.In high school, many students are introduced to calculus (微积分) through courses that cover its basic principles. However, the real-world applications of calculus (微积分) become evident in college-level courses, where students learn to apply these concepts to solve complex problems. For example, engineers use calculus (微积分) to design bridges and buildings, ensuring they can withstand various forces. In economics, calculus (微积分) helps analyze trends and optimize profits by determining the best production levels.Despite its importance, many students find calculus (微积分) challenging. The abstract nature of the subject can be intimidating, and it requires a solid understanding of algebra and geometry as prerequisites. To succeed in calculus (微积分), students must practice regularly and seek help when needed. Online resources, tutoring, and study groups can provide valuable support.Moreover, the beauty of calculus (微积分) lies in its ability to describe the world around us. From the trajectory of a basketball to the growth of a population, calculus (微积分) provides the mathematical framework to model these phenomena. By learning calculus (微积分), students not only develop their problem-solving skills but also gain a deeper appreciation for the interconnectedness of different disciplines.In conclusion, calculus (微积分) is a vital area of mathematics that opens doors to numerous scientific and technical fields. Its concepts, such as derivatives and integrals, are essential for understanding and solving real-world problems. While it may pose challenges for some, the rewards of mastering calculus (微积分) are immense, leading to a greater understanding of the universe and paving the way for future innovations. As we continue to explore the complexities of our world, calculus (微积分) will undoubtedly remain a cornerstone of scientific inquiry and discovery.
微积分是数学的一个分支,研究变化和运动。它是物理、工程、经济学和生物学等多个领域的重要工具。‘calculus’一词源自拉丁语‘calculus’,意为‘小石头’,指的是古代用于计算的计数石。理解calculus(微积分)对任何追求科学或技术职业的人来说都是至关重要的。calculus(微积分)的一个主要概念是导数,代表函数的变化率。例如,如果我们考虑一辆车随时间的位置,导数将给出车在任何时刻的速度。这个概念对于理解我们世界上事物的运动和变化至关重要。同样,积分,另一个calculus(微积分)中的关键概念,使我们能够计算曲线下的面积,这可以代表总行驶距离等。在高中,许多学生通过涵盖其基本原理的课程接触到calculus(微积分)。然而,calculus(微积分)的实际应用在大学课程中变得显而易见,学生们学习如何将这些概念应用于解决复杂问题。例如,工程师使用calculus(微积分)来设计桥梁和建筑,确保它们能够承受各种力量。在经济学中,calculus(微积分)帮助分析趋势并通过确定最佳生产水平来优化利润。尽管其重要性,许多学生发现calculus(微积分)具有挑战性。该学科的抽象性质可能令人畏惧,并且需要扎实的代数和几何基础。要在calculus(微积分)中取得成功,学生必须定期练习并在需要时寻求帮助。在线资源、辅导和学习小组可以提供宝贵的支持。此外,calculus(微积分)的美在于它能够描述我们周围的世界。从篮球的轨迹到人口的增长,calculus(微积分)提供了建模这些现象的数学框架。通过学习calculus(微积分),学生不仅发展了解决问题的能力,还加深了对不同学科相互联系的欣赏。总之,calculus(微积分)是数学的一个重要领域,为众多科学和技术领域打开了大门。其概念,如导数和积分,对于理解和解决现实世界的问题至关重要。虽然对某些人来说可能会带来挑战,但掌握calculus(微积分)的回报是巨大的,不仅使人们更深入地理解宇宙,而且为未来的创新铺平道路。随着我们继续探索世界的复杂性,calculus(微积分)无疑将继续成为科学探究和发现的基石。