quadrilateral
简明释义
英[ˌkwɒdrɪˈlætərəl]美[ˌkwɑːdrɪˈlætərəl]
n. 四边形
adj. 四边形的
英英释义
一个具有直边的四边形多边形。 | |
In geometry, it is a two-dimensional figure formed by connecting four points in a plane, where the points are not collinear. | 在几何学中,它是通过在平面上连接四个不共线的点形成的二维图形。 |
单词用法
四边形元 |
同义词
反义词
单边形 | A monogon is a shape with only one side, which is theoretically defined. | 单边形是一个只有一条边的形状,理论上被定义。 | |
三角形 | A triangle has three sides and is the simplest polygon after a quadrilateral. | 三角形有三条边,是四边形之后最简单的多边形。 |
例句
1.A quadrilateral mesh generation algorithm is presented for curved surface with line constraints.
提出了一种具有线约束的曲面四边形网格自动生成算法。
2.In US a quadrilateral with two parallel sides.
有两个平行边的四边形。
3.This paper presented an adjustable subdivision surface scheme based on quadrilateral meshes.
提出了一种基于四边形网格的可调细分曲面造型方法。
4.Hexhedral element for three dimensional parts and triangle and quadrilateral mesh for two dimensional parts can be generated.
利用该软件,可生成三维八节点六面体单元,同时也可生成二维三角形和四边形单元。
5.This paper presents a curvilinear boundary quadrilateral element for the problem of thin plate of bending with curvilinear boundary.
本文提出了曲边四边形薄板弯曲单元解决曲线边界薄板的弯曲问题。
6.The automatic generation algorithm of quadrilateral elements for finite element analysis is studied in detail.
详细研究了有限元模拟中的四边形网格自动生成算法。
7.The quadrilateral takes eight arguments representing the four points of the quadrilateral.
四边形接受八个参数,代表的是这个四边形的四个顶点。
8.Three generalized conforming quadrilateral plane elements are developed in this paper.
本文构造三个广义协调四边形膜元。
9.The classroom is shaped like a quadrilateral 四边形, which makes it easy to arrange desks.
教室的形状像一个quadrilateral 四边形,这使得桌子排列变得简单。
10.To find the area of a quadrilateral 四边形, you can divide it into triangles.
要计算quadrilateral 四边形的面积,可以将其分成三角形。
11.A rectangle is a specific type of quadrilateral 四边形 that has opposite sides equal and all angles right.
矩形是一种特定类型的quadrilateral 四边形,其对边相等且所有角都是直角。
12.In architecture, many buildings are designed with quadrilaterals 四边形 to create stable structures.
在建筑设计中,许多建筑使用quadrilaterals 四边形来创造稳定的结构。
13.In geometry, a quadrilateral 四边形 is defined as a polygon with four sides.
在几何学中,quadrilateral 四边形 被定义为一个有四条边的多边形。
作文
In the study of geometry, one fundamental shape that often comes into play is the quadrilateral. A quadrilateral is defined as a polygon with four edges (sides) and four vertices (corners). This shape is not only prevalent in mathematical studies but also in our daily lives. From the windows of our homes to the design of various objects, quadrilaterals can be found everywhere. Understanding the properties of quadrilaterals is essential for anyone looking to grasp the basics of geometry.There are several types of quadrilaterals, each with unique characteristics. The most common types include squares, rectangles, parallelograms, trapezoids, and rhombuses. A square is a special type of quadrilateral where all sides are equal in length and all angles are right angles. Similarly, a rectangle is another type of quadrilateral that has opposite sides equal and all angles at 90 degrees. On the other hand, a parallelogram has opposite sides that are equal and parallel, but the angles are not necessarily right angles. Trapezoids, or trapeziums as they are known in some parts of the world, have at least one pair of parallel sides, while rhombuses have all sides equal but do not require right angles.The area of a quadrilateral can be calculated using different formulas depending on its type. For example, the area of a rectangle is determined by multiplying its length by its width, while the area of a square is found by squaring the length of one of its sides. For more complex quadrilaterals like trapezoids, the area can be calculated using the formula: area = (1/2) * (base1 + base2) * height. Understanding how to calculate the area of these shapes allows us to apply this knowledge in real-life situations, such as determining the amount of material needed for construction or landscaping.Moreover, quadrilaterals can also be categorized based on their angles. For instance, if all angles in a quadrilateral are right angles, it is classified as a rectangle or square. If all angles are less than 90 degrees, it is called an acute quadrilateral. Conversely, if one angle is greater than 90 degrees, it is referred to as an obtuse quadrilateral. This classification helps in understanding the properties and applications of different quadrilaterals in various fields, including architecture, engineering, and art.In conclusion, the quadrilateral is a vital component of geometry and plays a significant role in both theoretical and practical applications. Its diverse forms and properties allow for a wide range of uses, making it an essential topic for students and professionals alike. By mastering the characteristics and calculations related to quadrilaterals, individuals can enhance their spatial reasoning and problem-solving skills. Ultimately, recognizing the importance of quadrilaterals in our environment encourages a deeper appreciation for geometry and its relevance in everyday life.
在几何学的研究中,一个基本的形状经常出现,那就是四边形。四边形被定义为一种具有四条边(侧面)和四个顶点(角)的多边形。这种形状不仅在数学研究中普遍存在,而且在我们的日常生活中也随处可见。从我们家窗户的设计到各种物体的结构,四边形无处不在。理解四边形的性质对于任何想要掌握几何基础的人来说都是至关重要的。四边形有几种类型,每种类型都有其独特的特征。最常见的类型包括正方形、矩形、平行四边形、梯形和菱形。正方形是一种特殊的四边形,其所有边的长度相等,且所有角都是直角。同样,矩形是另一种四边形,其对边相等且所有角为90度。另一方面,平行四边形的对边相等且平行,但角不一定是直角。梯形,或在某些地方称为梯形,至少有一对平行的边,而菱形则所有边相等但不要求是直角。四边形的面积可以根据其类型使用不同的公式进行计算。例如,矩形的面积通过将其长度乘以宽度来确定,而正方形的面积通过对其任一边的长度进行平方来计算。对于更复杂的四边形如梯形,面积可以使用以下公式计算:面积 = (1/2) * (底边1 + 底边2) * 高。了解如何计算这些形状的面积使我们能够在现实生活中应用这些知识,例如确定建筑或园艺所需的材料数量。此外,四边形还可以根据其角度进行分类。例如,如果一个四边形的所有角都是直角,那么它被归类为矩形或正方形。如果所有角都小于90度,则称为锐角四边形。相反,如果一个角大于90度,则称为钝角四边形。这种分类有助于理解不同四边形在各个领域(包括建筑、工程和艺术)中的性质和应用。总之,四边形是几何学的重要组成部分,在理论和实际应用中发挥着重要作用。它的多样形式和性质允许广泛的用途,使其成为学生和专业人士必不可少的主题。通过掌握与四边形相关的特征和计算,个人可以增强他们的空间推理和解决问题的能力。最终,认识到四边形在我们环境中的重要性,鼓励人们更深入地欣赏几何学及其在日常生活中的相关性。