symmetrize
简明释义
v. 使对称,使匀称;使均衡
第 三 人 称 单 数 s y m m e t r i z e s
现 在 分 词 s y m m e t r i z i n g
过 去 式 s y m m e t r i z e d
过 去 分 词 s y m m e t r i z e d
英英释义
To make something symmetrical or to adjust it so that it has symmetry. | 使某物对称或调整其使其具有对称性。 |
单词用法
对称化方程 | |
对称化数据 | |
对称化矩阵 | |
相对于...进行对称化 | |
完全对称化的 | |
部分对称化的 |
同义词
平衡 | 为了平衡设计,我们需要对布局进行对称化处理。 | ||
使相等 | The team worked to equalize the distribution of resources across the project. | 团队努力使资源在项目中均匀分配。 | |
规范化 | 我们应该规范化流程以确保一致性。 | ||
协调 | 艺术家旨在使画作中的颜色协调统一。 |
反义词
非对称化 | 这个设计被非对称化,以创造更具活力的外观。 | ||
扭曲 | 如果没有正确地进行对称化,数据可能会变得扭曲。 |
例句
1.In view of the above, the transformation properties of astigmatic elliptic Gaussian beams are analysed overall, the exact formulas of correcting astigmatism and rotary symmetrize transformation.
分析像散椭圆高斯光束的传输变换特性,推导出半导体激光束的像散校正与旋转对称化变换公式。
2.In view of the above, the transformation properties of astigmatic elliptic Gaussian beams are analysed overall, the exact formulas of correcting astigmatism and rotary symmetrize transformation.
分析像散椭圆高斯光束的传输变换特性,推导出半导体激光束的像散校正与旋转对称化变换公式。
3.To improve the performance of the algorithm, we can symmetrize 对称化 the data structure.
为了提高算法的性能,我们可以
4.The mathematicians decided to symmetrize 对称化 the equation to simplify their calculations.
数学家们决定
5.In order to achieve a balanced design, we need to symmetrize 对称化 the layout of the website.
为了实现一个平衡的设计,我们需要
6.In physics, you often need to symmetrize 对称化 the wave functions to satisfy certain conditions.
在物理学中,您通常需要
7.The artist aimed to symmetrize 对称化 the elements in her painting for aesthetic appeal.
这位艺术家的目标是为了美观而
作文
In the realm of mathematics and physics, the concept of symmetry plays a crucial role in understanding various phenomena. One term that frequently arises in this context is symmetrize, which refers to the process of making something symmetric or balanced. This can apply to equations, physical systems, or even abstract concepts. To symmetrize an equation means to modify it so that it exhibits symmetry, often leading to more elegant solutions and better insights into the underlying principles at play.For instance, consider the study of particle physics, where researchers often deal with complex equations that describe the interactions between fundamental particles. By applying the principle of symmetrization, physicists can simplify these equations, making them easier to analyze and solve. This process not only aids in calculations but also reveals deeper connections between different physical theories.In geometry, symmetrizing shapes can provide valuable information about their properties. For example, if we have an irregular polygon, we might symmetrize it by reflecting it across its axes of symmetry. This transformation allows us to understand the polygon's characteristics better and can even help in optimizing certain design aspects in engineering.The importance of symmetrization extends beyond mathematics and physics; it can also be found in art and architecture. Artists often seek to create visually appealing compositions by employing symmetry, which can evoke a sense of harmony and balance. Similarly, architects might symmetrize their designs to ensure that buildings are aesthetically pleasing and structurally sound. The application of symmetry in these fields illustrates how the concept transcends disciplinary boundaries, influencing a wide range of practices.Furthermore, symmetrizing data in statistics can lead to more robust analyses. When dealing with datasets that exhibit skewness, researchers may choose to symmetrize the data to meet the assumptions of certain statistical tests. This technique can improve the reliability of conclusions drawn from the data, ultimately enhancing the quality of research findings.In conclusion, the term symmetrize encapsulates a fundamental idea that resonates across multiple domains. Whether in mathematics, physics, art, or statistics, symmetrization serves as a powerful tool for simplifying complexity and revealing underlying patterns. By embracing the concept of symmetry, we can gain deeper insights into the world around us and foster creativity in our endeavors. Understanding how to symmetrize not only enriches our knowledge but also enhances our ability to communicate ideas effectively, bridging gaps between seemingly disparate fields. As we continue to explore and apply the notion of symmetry, we unlock new possibilities for innovation and discovery, demonstrating the timeless relevance of this mathematical principle in our ever-evolving understanding of the universe.
在数学和物理的领域,对称的概念在理解各种现象中起着至关重要的作用。一个经常出现的术语是symmetrize,它指的是使某物具有对称性或平衡的过程。这可以适用于方程、物理系统,甚至抽象概念。对一个方程进行symmetrize意味着修改它,使其表现出对称性,这通常会导致更优雅的解决方案以及对潜在原理的更好洞察。例如,考虑粒子物理学的研究,研究人员经常处理描述基本粒子之间相互作用的复杂方程。通过应用symmetrization的原则,物理学家可以简化这些方程,使其更易于分析和求解。这个过程不仅有助于计算,还揭示了不同物理理论之间更深层次的联系。在几何学中,对形状进行symmetrization可以提供有关其性质的宝贵信息。例如,如果我们有一个不规则多边形,我们可能会通过沿其对称轴反射来symmetrize它。这一变换使我们能够更好地理解多边形的特征,甚至可以帮助优化工程中的某些设计方面。Symmetrization的重要性不仅限于数学和物理;它还可以在艺术和建筑中找到。艺术家们常常寻求通过运用对称性来创造视觉上令人愉悦的构图,这可以引发和谐和平衡的感觉。同样,建筑师可能会symmetrize他们的设计,以确保建筑在美观和结构上都是合理的。在这些领域中对称性的应用展示了这一概念如何跨越学科界限,影响广泛的实践。此外,在统计学中对数据进行symmetrization可以导致更稳健的分析。当处理表现出偏斜的数据集时,研究人员可能会选择symmetrize数据,以满足某些统计检验的假设。这个技术可以提高从数据中得出的结论的可靠性,最终增强研究结果的质量。总之,术语symmetrize概括了一个在多个领域中产生共鸣的基本思想。无论是在数学、物理、艺术还是统计学中,symmetrization都是简化复杂性和揭示潜在模式的强大工具。通过接受对称的概念,我们可以更深入地洞察周围的世界,并在我们的努力中促进创造力。理解如何symmetrize不仅丰富了我们的知识,也增强了我们有效沟通思想的能力,弥合看似不同领域之间的差距。随着我们继续探索和应用对称的概念,我们为创新和发现开启了新的可能性,展示了这一数学原理在我们不断发展的宇宙理解中的永恒相关性。