sclerotial
简明释义
英[ˌsklɛrəˈtaɪəl]美[ˌsklɛrəˈtaɪəl]
菌核的
英英释义
Relating to or resembling a sclerotium, which is a hardened mass of fungal mycelium that serves as a survival structure. | 与硬壳体相关或类似,硬壳体是真菌菌丝的硬化块,作为生存结构。 |
单词用法
硬化体真菌 | |
硬化阶段 | |
硬化体形成 | |
硬化体植物病原体 | |
硬化体生存结构 | |
硬化体疾病 |
同义词
硬化的 | The sclerotic changes in the tissue indicate a chronic condition. | 组织中的硬化变化表明存在慢性病症。 | |
硬组织的 | In botany, sclerous tissues provide structural support to plants. | 在植物学中,硬组织为植物提供结构支持。 |
反义词
营养的 | 植物的营养状态允许快速生长。 | ||
软的 | Soft tissues are more flexible and can adapt to various conditions. | 软组织更加灵活,可以适应各种条件。 |
例句
1.The results showed that: Formation and accumulation of lipid droplets of MOD-1 is almost synchronous with mycelial growth and sclerotial differentiation;
结果表明: MOD-1油脂的产生和积累跟菌丝的生长和菌核的分化几乎同步进行;
2.The results showed that: Formation and accumulation of lipid droplets of MOD-1 is almost synchronous with mycelial growth and sclerotial differentiation;
结果表明: MOD-1油脂的产生和积累跟菌丝的生长和菌核的分化几乎同步进行;
3.Farmers need to be aware of sclerotial 硬化体的 diseases that can affect their crops.
农民需要了解可能影响他们作物的硬化体的疾病。
4.In agricultural studies, sclerotial 硬化体的 forms of pathogens are often analyzed for disease management.
在农业研究中,常常分析病原体的硬化体的形式以进行病害管理。
5.The sclerotial 硬化体的 stage of the fungus is crucial for its lifecycle.
真菌的硬化体的阶段对其生命周期至关重要。
6.Research shows that sclerotial 硬化体的 fungi can remain dormant for many years.
研究表明,硬化体的真菌可以保持休眠状态多年。
7.The sclerotial 硬化体的 bodies of the fungus can survive harsh environmental conditions.
这种真菌的硬化体的结构能够在恶劣的环境条件下存活。
作文
In the realm of plant pathology, understanding the mechanisms behind fungal infections is crucial for developing effective agricultural practices. One such mechanism involves the formation of structures known as sclerotial bodies. These hardened masses of fungal mycelium serve as a survival strategy for many fungi, allowing them to endure adverse environmental conditions. The study of sclerotial structures has significant implications for both crop management and ecological balance.Fungi are diverse organisms that play various roles in ecosystems, including decomposers, pathogens, and symbionts. Among these, certain fungi form sclerotial bodies, which are typically dark, compact, and resistant to extreme temperatures and desiccation. This ability to withstand harsh conditions makes sclerotial fungi particularly problematic for farmers, as they can remain dormant in the soil for extended periods, ready to infect crops when conditions become favorable. For instance, the notorious fungus Sclerotinia sclerotiorum produces sclerotial bodies that can survive for years, only germinating when moisture levels rise and temperatures are conducive to growth.The life cycle of sclerotial fungi often begins with the germination of these bodies, leading to the production of fruiting bodies that release spores. These spores can then spread through wind, water, or contact with infected plants, establishing new infections. Understanding this life cycle is essential for implementing effective control measures. Crop rotation, for example, can disrupt the life cycle of sclerotial pathogens by planting non-host crops, thereby reducing the potential for infection in subsequent seasons.Moreover, research into the genetic makeup of sclerotial fungi has revealed insights into their adaptability and resistance mechanisms. By studying the genes responsible for sclerotial formation, scientists can identify targets for biocontrol agents or develop resistant crop varieties. This ongoing research highlights the importance of integrating molecular biology with traditional agricultural practices to combat sclerotial diseases effectively.In conclusion, the study of sclerotial fungi offers valuable lessons for sustainable agriculture. Their ability to persist in the environment poses challenges for crop production, but understanding their biology provides opportunities for innovative management strategies. As we continue to explore the complexities of plant-fungal interactions, the knowledge gained from sclerotial studies will undoubtedly play a pivotal role in ensuring food security and maintaining ecological health.
在植物病理学领域,理解真菌感染背后的机制对于开发有效的农业实践至关重要。一个这样的机制涉及到被称为sclerotial体的结构。这些硬化的真菌菌丝体块作为许多真菌的一种生存策略,使它们能够忍受不利的环境条件。对sclerotial结构的研究对作物管理和生态平衡都具有重要意义。真菌是多样化的生物,在生态系统中扮演着各种角色,包括分解者、病原体和共生体。其中某些真菌形成sclerotial体,这些体通常是黑色的、紧凑的,并且能够抵御极端温度和干燥。这种耐受恶劣条件的能力使得sclerotial真菌对农民特别麻烦,因为它们可以在土壤中保持休眠状态很长时间,当条件变得有利时,它们随时准备感染作物。例如,臭名昭著的真菌Sclerotinia sclerotiorum会产生sclerotial体,这些体可以存活多年,只有在湿度上升和温度适合生长时才会发芽。sclerotial真菌的生命周期通常始于这些体的发芽,导致产生释放孢子的果实体。这些孢子可以通过风、水或与感染植物的接触传播,从而建立新的感染。了解这一生命周期对于实施有效的控制措施至关重要。例如,作物轮作可以通过种植非宿主作物来打乱sclerotial病原体的生命周期,从而减少后续季节感染的潜力。此外,对sclerotial真菌遗传组成的研究揭示了它们的适应性和抗性机制。通过研究负责sclerotial形成的基因,科学家可以识别生物防治剂的靶标或开发抗病作物品种。这项正在进行的研究突显了将分子生物学与传统农业实践相结合的重要性,以有效对抗sclerotial疾病。总之,研究sclerotial真菌为可持续农业提供了宝贵的经验教训。它们在环境中持久存在的能力给作物生产带来了挑战,但了解它们的生物学为创新管理策略提供了机会。随着我们继续探索植物与真菌之间复杂的相互作用,从sclerotial研究中获得的知识无疑将在确保粮食安全和维护生态健康方面发挥关键作用。