presynaptic

简明释义

[ˌpriːsɪˈnæptɪk][ˌprisɪˈnæptɪk]

adj. [解剖] 突触前的

英英释义

Relating to the part of a neuron that releases neurotransmitters into the synaptic cleft before the transmission of a nerve impulse.

与神经元的部分相关,该部分在神经冲动传递之前将神经递质释放到突触间隙中。

单词用法

presynaptic activity

突触前活动

presynaptic cleft

突触前间隙

presynaptic signaling

突触前信号传递

presynaptic neurotransmitter release

突触前神经递质释放

presynaptic modulation

突触前调节

presynaptic receptor

突触前受体

同义词

pre-synaptic

突触前

The presynaptic neuron releases neurotransmitters into the synaptic cleft.

突触前神经元将神经递质释放到突触间隙。

axon terminal

轴突末端

In the axon terminal, calcium ions trigger the release of synaptic vesicles.

在轴突末端,钙离子触发突触小泡的释放。

反义词

postsynaptic

突触后

The postsynaptic neuron receives signals from the presynaptic neuron.

突触后神经元接收来自突触前神经元的信号。

例句

1.Here, temporal synaptic stability and the functional consequences for presynaptic operation will be considered.

应当考虑突触前的手术对临时突触的稳定性和相应功能的影响。

2.A neurotransmitter must be present within the presynaptic neuron.

突触前神经元必须存在神经递质。

3.Excitatory amino acid transporters (EAAT) localizes on the presynaptic membrane, synaptic vesicle and glial membrane.

兴奋性氨基酸转运体(EAAT)位于突触前膜、突触囊泡和神经胶质细胞膜上。

4.Our findings challenge the view that LTP in CA1 involves a presynaptic modification, and suggest instead a simple postsynaptic mechanism for both induction and expression of LTP.

我们的研究挑战以长期电位画在CA1促成前突触的改变,并建议一个简单的以后突触改变结构的诱发与显示的长期电位化。

5.Recently, transporter, that is a sort of protein located in the presynaptic membrane, vesicle membrane and glia cell membrane, has been the study hotspot of neuroscience.

近年来,一种位于突触前膜、囊泡膜及神经胶质细胞膜上的糖蛋白—神经递质转运体逐渐成为神经科学界研究的热点。

6.A major challenge in studying the synapse is how to tell what observed effects are due to presynaptic factors and which to postsynaptic ones.

研究突触最大的困难在于如何区辨所观察到的反应是来自突触前或突触后因子所导致。

7.The H 3 receptors are presynaptic receptors which regulate the synthesis and release of histamine in histaminergic neurons in central nervous system.

突触前递质释放装置的发育成熟和突触后受体的转运是中枢神经系统突触发育过程中非常重要的两个方面。

8.The presynaptic 突触前的 membrane potential influences the amount of neurotransmitter released.

电位的变化影响突触前的膜释放的神经递质的数量。

9.Calcium ions enter the presynaptic 突触前的 terminal, triggering neurotransmitter release.

钙离子进入突触前的终端,触发神经递质的释放。

10.In the study, we observed changes in presynaptic 突触前的 activity during learning.

在研究中,我们观察到学习过程中突触前的活动发生了变化。

11.The role of the presynaptic 突触前的 neuron is crucial for signal transmission.

对于信号传递来说,突触前的神经元的角色至关重要。

12.The neurotransmitter is released from the presynaptic 突触前的 terminal into the synaptic cleft.

神经递质从突触前的终端释放到突触间隙。

作文

The human brain is a complex organ that relies on intricate networks of neurons to communicate and process information. One of the fundamental concepts in neuroscience is the role of the synapse, which is the junction where two neurons meet. Within this context, the term presynaptic refers to the neuron that sends the signal across the synapse. Understanding the function of presynaptic neurons is crucial for grasping how information is transmitted in the brain and how various neurological disorders can affect this communication pathway.When a neuron is activated, it generates an electrical impulse known as an action potential. This impulse travels down the axon of the neuron until it reaches the presynaptic terminal, which is the end part of the neuron where neurotransmitters are stored. Neurotransmitters are chemical messengers that play a vital role in transmitting signals from one neuron to another. Upon reaching the presynaptic terminal, the action potential triggers the release of these neurotransmitters into the synaptic cleft, the small gap between the presynaptic neuron and the postsynaptic neuron.Once released, the neurotransmitters bind to specific receptors on the surface of the postsynaptic neuron, leading to a series of biochemical events that may result in the generation of a new action potential in the receiving neuron. This process is essential for the propagation of signals throughout the nervous system, allowing for everything from reflexes to complex behaviors. The efficiency of this communication can be influenced by various factors, including the amount of neurotransmitter released by the presynaptic neuron, the sensitivity of the postsynaptic receptors, and the overall health of the synaptic connections.Moreover, understanding the presynaptic mechanisms has significant implications for medical research and treatment strategies for neurological diseases. For instance, conditions such as Parkinson's disease, depression, and schizophrenia are linked to disruptions in neurotransmitter systems. By studying the presynaptic processes involved in these conditions, researchers aim to develop targeted therapies that can restore normal function. For example, certain medications work by enhancing the release of neurotransmitters from the presynaptic terminals or by blocking the reuptake of these chemicals, thereby increasing their availability in the synaptic cleft.In addition to its role in health, the concept of presynaptic activity also extends to learning and memory. Studies have shown that synaptic plasticity, the ability of synapses to strengthen or weaken over time, is largely dependent on the activity of presynaptic neurons. When a particular neural pathway is used frequently, the presynaptic neurons involved in that pathway become more efficient at releasing neurotransmitters, leading to stronger connections among the neurons. This phenomenon is often summarized by the phrase "cells that fire together, wire together," highlighting the importance of presynaptic activity in shaping our experiences and memories.In conclusion, the term presynaptic is integral to our understanding of neuronal communication and the functioning of the brain. From the release of neurotransmitters to the implications for mental health and learning, the role of presynaptic neurons is multifaceted and critical. As research continues to advance, the insights gained from studying presynaptic mechanisms will undoubtedly contribute to the development of innovative treatments for various neurological disorders and enhance our understanding of the human brain's remarkable capabilities.

人脑是一个复杂的器官,依赖于神经元之间错综复杂的网络进行交流和处理信息。神经科学中的一个基本概念是突触的作用,突触是两个神经元相遇的交界处。在这个背景下,术语presynaptic指的是发送信号跨越突触的神经元。理解presynaptic神经元的功能对于掌握信息在大脑中的传递方式以及各种神经系统疾病如何影响这种通信路径至关重要。当一个神经元被激活时,它会产生一种称为动作电位的电冲动。这个冲动沿着神经元的轴突传播,直到到达presynaptic末端,这是神经元的末端部分,储存着神经递质。神经递质是化学信使,在从一个神经元向另一个神经元传递信号中发挥着至关重要的作用。当动作电位到达presynaptic末端时,它会触发这些神经递质释放到突触间隙中,即presynaptic神经元与后突触神经元之间的小间隙。一旦释放,神经递质就会与后突触神经元表面特定的受体结合,导致一系列生化事件,这些事件可能导致接收神经元中生成新的动作电位。这个过程对神经系统中信号的传播至关重要,使得从反射到复杂行为的一切都成为可能。这种通信的效率可以受到多种因素的影响,包括presynaptic神经元释放的神经递质的数量、后突触受体的敏感性以及突触连接的整体健康状况。此外,理解presynaptic机制对医学研究和神经疾病治疗策略具有重要意义。例如,帕金森病、抑郁症和精神分裂症等疾病与神经递质系统的干扰有关。通过研究与这些疾病相关的presynaptic过程,研究人员旨在开发能够恢复正常功能的靶向疗法。例如,某些药物通过增强presynaptic末端释放的神经递质或通过阻止这些化学物质的再摄取,从而增加它们在突触间隙中的可用性。除了在健康方面的作用,presynaptic活动的概念还扩展到学习和记忆。研究表明,突触可塑性,即突触随着时间的推移而增强或减弱的能力,很大程度上依赖于presynaptic神经元的活动。当特定的神经通路被频繁使用时,参与该通路的presynaptic神经元在释放神经递质方面变得更加高效,从而导致神经元之间更强的连接。这个现象通常用“一起放电的细胞会连接在一起”这句话来概括,强调了presynaptic活动在塑造我们的经历和记忆中的重要性。总之,术语presynaptic对于我们理解神经元通信和大脑功能至关重要。从神经递质的释放到对心理健康和学习的影响,presynaptic神经元的角色是多方面的且至关重要。随着研究的不断推进,从研究presynaptic机制中获得的见解无疑将有助于开发各种神经疾病的创新治疗方法,并增强我们对人脑非凡能力的理解。