binomial distribution

简明释义

二项分布

英英释义

A binomial distribution is a discrete probability distribution that describes the number of successes in a fixed number of independent Bernoulli trials, each with the same probability of success.

二项分布是一种离散概率分布,用于描述在固定数量的独立伯努利试验中成功的次数,每次试验的成功概率相同。

例句

1.The probability of getting exactly three heads in ten coin flips can be calculated using the binomial distribution (二项分布).

在十次掷硬币中恰好得到三次正面的概率可以通过binomial distribution (二项分布)来计算。

2.A survey that asks whether people prefer product A or B can be analyzed using the binomial distribution (二项分布).

一项调查询问人们是否更喜欢产品A或B,可以使用binomial distribution (二项分布)进行分析。

3.The binomial distribution (二项分布) is useful in predicting the number of successes in a series of independent trials.

在一系列独立试验中,binomial distribution (二项分布)对于预测成功的次数非常有用。

4.When conducting experiments, researchers often rely on the binomial distribution (二项分布) to model binary outcomes.

在进行实验时,研究人员通常依赖于binomial distribution (二项分布)来建模二元结果。

5.In quality control, a manufacturer might use the binomial distribution (二项分布) to determine the likelihood of producing defective items.

在质量控制中,制造商可能会使用binomial distribution (二项分布)来确定生产缺陷商品的可能性。

作文

Understanding the concept of probability is essential in various fields, including science, finance, and everyday decision-making. One of the fundamental concepts in probability theory is the binomial distribution, which describes the number of successes in a fixed number of independent Bernoulli trials. Each trial has two possible outcomes: success or failure. For instance, consider a scenario where we flip a coin multiple times. The binomial distribution can help us determine the probability of getting a certain number of heads in those flips.To grasp the significance of the binomial distribution, it is crucial to understand its parameters. The binomial distribution is characterized by two parameters: n and p. Here, n represents the number of trials, while p denotes the probability of success on each trial. For example, if we flip a coin 10 times (n = 10) and want to find the probability of getting exactly 4 heads (successes) when the probability of heads (success) is 0.5 (p = 0.5), we can use the binomial distribution formula to calculate this.The formula for the binomial distribution is given by:P(X = k) = (n choose k) * (p^k) * ((1-p)^(n-k))where P(X = k) is the probability of getting exactly k successes in n trials, and "n choose k" or C(n, k) is the binomial coefficient that calculates the number of ways to choose k successes from n trials.In our coin-flipping example, we can substitute the values into the formula to find the probability of getting exactly 4 heads. Using the binomial coefficient, we have:C(10, 4) = 10! / (4!(10-4)!) = 210Thus, the probability of getting exactly 4 heads is:P(X = 4) = 210 * (0.5^4) * (0.5^(10-4)) = 210 * (0.0625) * (0.0625) = 0.205078125This means there is approximately a 20.5% chance of flipping exactly 4 heads in 10 attempts. The binomial distribution not only helps in calculating probabilities but also plays a significant role in hypothesis testing and confidence interval estimation.Moreover, the binomial distribution can be applied in various real-life scenarios. For example, in quality control, a manufacturer might want to know the likelihood of producing a certain number of defective items out of a batch. By using the binomial distribution, they can make informed decisions about production processes and quality assurance measures.In conclusion, the binomial distribution is a powerful tool in statistics and probability that allows us to model and analyze situations involving binary outcomes. Its applications are vast, ranging from simple experiments like coin tosses to complex business decisions. Understanding the binomial distribution not only enhances our mathematical skills but also equips us with the ability to make better predictions and decisions based on probabilistic reasoning. As we continue to explore the world of statistics, the binomial distribution remains a foundational concept that will undoubtedly aid in our understanding of uncertainty and variability in various contexts.

理解概率的概念在科学、金融和日常决策等多个领域中至关重要。概率论中的一个基本概念是二项分布,它描述了在固定数量的独立伯努利试验中成功的次数。每次试验有两种可能的结果:成功或失败。例如,考虑一个场景,我们多次抛硬币。二项分布可以帮助我们确定在这些抛掷中得到一定数量的正面的概率。要理解二项分布的重要性,关键是要了解其参数。二项分布由两个参数特征化:n 和 p。这里,n 代表试验的次数,而 p 表示每次试验成功的概率。例如,如果我们抛硬币 10 次(n = 10),并想要找到在成功概率为 0.5(p = 0.5)的情况下恰好得到 4 个正面(成功)的概率,我们可以使用二项分布公式来计算这个概率。二项分布的公式为:P(X = k) = (n choose k) * (p^k) * ((1-p)^(n-k))其中 P(X = k) 是在 n 次试验中恰好获得 k 次成功的概率,而 "n choose k" 或 C(n, k) 是计算从 n 次试验中选择 k 次成功的方式数量的二项系数。在我们的抛硬币例子中,我们可以将值代入公式以找到恰好得到 4 个正面的概率。使用二项系数,我们有:C(10, 4) = 10! / (4!(10-4)!) = 210因此,恰好得到 4 个正面的概率为:P(X = 4) = 210 * (0.5^4) * (0.5^(10-4)) = 210 * (0.0625) * (0.0625) = 0.205078125这意味着在 10 次尝试中恰好翻出 4 个正面的概率约为 20.5%。二项分布不仅有助于计算概率,还在假设检验和置信区间估计中发挥着重要作用。此外,二项分布可以应用于各种现实生活场景。例如,在质量控制中,制造商可能想知道在一批产品中生产出一定数量的不合格品的可能性。通过使用二项分布,他们可以对生产过程和质量保证措施做出明智的决策。总之,二项分布是统计学和概率学中的一个强大工具,使我们能够建模和分析涉及二元结果的情况。它的应用范围广泛,从简单的实验如抛硬币到复杂的商业决策。理解二项分布不仅提高了我们的数学技能,还使我们能够基于概率推理做出更好的预测和决策。在我们继续探索统计学的世界时,二项分布仍然是一个基础概念,无疑将有助于我们理解各种背景下的不确定性和变异性。

相关单词

binomial

binomial详解:怎么读、什么意思、用法

distribution

distribution详解:怎么读、什么意思、用法