bending stress fatigue limit
简明释义
弯曲应力疲劳极限
英英释义
The maximum level of bending stress that a material can withstand for a specified number of cycles without experiencing fatigue failure. | 材料在规定的循环次数内能承受的最大弯曲应力水平,而不发生疲劳破坏。 |
例句
1.Engineers tested the material to determine its bending stress fatigue limit 弯曲应力疲劳极限 before finalizing the product.
工程师在最终确定产品之前测试了材料以确定其弯曲应力疲劳极限 bending stress fatigue limit。
2.The design of the bridge must consider the bending stress fatigue limit 弯曲应力疲劳极限 to ensure long-term durability.
桥梁的设计必须考虑弯曲应力疲劳极限 bending stress fatigue limit以确保长期耐用性。
3.Manufacturers often conduct experiments to measure the bending stress fatigue limit 弯曲应力疲劳极限 of new alloys.
制造商通常进行实验以测量新合金的弯曲应力疲劳极限 bending stress fatigue limit。
4.The bending stress fatigue limit 弯曲应力疲劳极限 directly influences the lifespan of mechanical components.
弯曲应力疲劳极限 bending stress fatigue limit直接影响机械组件的使用寿命。
5.Understanding the bending stress fatigue limit 弯曲应力疲劳极限 is crucial for designing components in aerospace applications.
理解弯曲应力疲劳极限 bending stress fatigue limit对于航空航天应用中的组件设计至关重要。
作文
In the field of materials science and engineering, understanding the concept of bending stress fatigue limit is crucial for designing structures that can withstand various loads over time. This term refers to the maximum stress level that a material can endure under repeated bending without failing due to fatigue. Fatigue failure occurs when a material is subjected to cyclic loading, which can lead to the formation of cracks and eventual breakage, even if the stress levels are below the material's ultimate tensile strength.To illustrate the importance of the bending stress fatigue limit, consider the example of a bridge. Bridges are subjected to dynamic loads from vehicles, pedestrians, and environmental factors such as wind and temperature changes. Engineers must take into account the bending stress fatigue limit of the materials used in the construction of the bridge to ensure that it can safely accommodate these stresses over its intended lifespan. If the materials do not have an adequate bending stress fatigue limit, the bridge could suffer from fatigue damage, leading to costly repairs or even catastrophic failure.The determination of the bending stress fatigue limit involves extensive testing and analysis. Engineers typically conduct fatigue tests on materials by applying cyclic loads to samples and observing how they respond over time. This data helps to establish a fatigue curve, which illustrates the relationship between stress levels and the number of cycles a material can endure before failure. By understanding the bending stress fatigue limit, engineers can make informed decisions about material selection and design parameters.Moreover, different materials exhibit varying bending stress fatigue limits. For instance, metals like steel often have higher fatigue limits compared to more brittle materials like ceramics. This is why steel is commonly used in construction projects where high strength and durability are required. Additionally, factors such as temperature, surface finish, and the presence of notches or defects can significantly influence the bending stress fatigue limit of a material.In conclusion, the bending stress fatigue limit is a fundamental concept in engineering that plays a vital role in ensuring the longevity and safety of structures. By comprehensively understanding this limit, engineers can design more resilient systems that can withstand the challenges posed by cyclic loading. As technology advances and new materials are developed, the study of bending stress fatigue limit will continue to be an essential aspect of material science, influencing the future of engineering practices and innovations.
在材料科学和工程领域,理解弯曲应力疲劳极限的概念对于设计能够承受各种载荷的结构至关重要。这个术语指的是材料在反复弯曲下能够承受而不因疲劳而失效的最大应力水平。疲劳失效发生在材料受到循环载荷时,这可能导致裂纹的形成和最终断裂,即使应力水平低于材料的最终抗拉强度。为了说明弯曲应力疲劳极限的重要性,可以考虑桥梁的例子。桥梁受到车辆、行人和环境因素(如风和温度变化)施加的动态载荷。工程师必须考虑用于桥梁建造材料的弯曲应力疲劳极限,以确保它能够安全地承受这些应力,直至其预期使用寿命。如果材料的弯曲应力疲劳极限不足,桥梁可能会遭受疲劳损伤,导致昂贵的维修或甚至灾难性的失败。弯曲应力疲劳极限的确定涉及广泛的测试和分析。工程师通常通过对样本施加循环载荷并观察其随时间的反应来进行疲劳测试。这些数据有助于建立疲劳曲线,该曲线展示了应力水平与材料在失效前能承受的循环次数之间的关系。通过理解弯曲应力疲劳极限,工程师可以在材料选择和设计参数上做出明智的决策。此外,不同材料表现出不同的弯曲应力疲劳极限。例如,钢等金属的疲劳极限通常比陶瓷等脆性材料高。这就是为什么钢通常用于需要高强度和耐久性的建筑项目。此外,温度、表面光洁度以及缺口或缺陷的存在等因素都可能显著影响材料的弯曲应力疲劳极限。总之,弯曲应力疲劳极限是工程中的一个基本概念,在确保结构的长期稳定性和安全性方面起着至关重要的作用。通过全面理解这一极限,工程师可以设计出更具韧性的系统,以抵御循环载荷带来的挑战。随着技术的进步和新材料的发展,对弯曲应力疲劳极限的研究将继续成为材料科学的一个重要方面,影响工程实践和创新的未来。
相关单词