bending moment
简明释义
弯矩弯曲力矩
英英释义
例句
1.To ensure safety, the design must account for the bending moment 弯矩 caused by live loads.
为了确保安全,设计必须考虑活荷载引起的bending moment 弯矩。
2.The bending moment 弯矩 increases as the distance from the support increases.
随着离支撑点的距离增加,bending moment 弯矩 增加。
3.The bending moment 弯矩 diagram helps visualize how the internal forces change along the length of the beam.
bending moment 弯矩 图有助于可视化内部力沿梁的长度如何变化。
4.The engineer calculated the maximum bending moment 弯矩 that the beam could withstand before failure.
工程师计算了梁在失效之前能够承受的最大bending moment 弯矩。
5.In a simply supported beam, the bending moment 弯矩 at the supports is always zero.
在简支梁中,支撑点处的bending moment 弯矩始终为零。
作文
The concept of a bending moment is fundamental in the field of structural engineering and mechanics. Understanding this principle is essential for anyone involved in designing buildings, bridges, or any structures that must withstand various loads. A bending moment occurs when an external force is applied to a beam or structural element, causing it to bend. This bending creates internal stresses within the material, which can lead to deformation or failure if not properly accounted for.To illustrate the importance of bending moments, consider a simple example of a cantilever beam. Imagine a beam fixed at one end and free at the other, with a weight hanging from the free end. The weight exerts a downward force, creating a bending moment at the fixed support. This moment is a product of the force and the distance from the point of application to the support. Engineers must calculate the bending moment to ensure that the beam can safely support the load without excessive deflection or risk of breaking.In practice, engineers use various methods to analyze bending moments. One common approach is to create a shear and moment diagram, which visually represents how the bending moment varies along the length of the beam. These diagrams help identify critical points where the moment is greatest, allowing engineers to reinforce those areas to prevent failure.Moreover, the materials used in construction play a significant role in how structures respond to bending moments. Different materials have varying strengths and stiffnesses, which affect their ability to resist bending. For instance, steel beams can withstand larger bending moments compared to wooden beams due to their higher tensile strength. This is why material selection is crucial in structural design.Furthermore, understanding bending moments extends beyond static loads. Dynamic loads, such as wind or seismic activity, also create bending moments that must be considered in the design process. Engineers must account for these forces to ensure the structure remains safe and functional over its lifespan.In conclusion, the concept of bending moment is vital for ensuring the safety and stability of structures. Whether dealing with static or dynamic loads, engineers must understand how bending moments affect materials and designs. By accurately calculating and analyzing these moments, we can create structures that not only meet aesthetic and functional requirements but also stand the test of time against various forces. The study of bending moments is a cornerstone of engineering education, providing future engineers with the tools they need to build a safer world.
‘弯矩’的概念在结构工程和力学领域中是基础性的。理解这一原理对于任何参与建筑、桥梁或任何必须承受各种荷载的结构设计的人来说都是至关重要的。当外部力量施加到梁或结构元件上时,就会产生‘弯矩’,导致其弯曲。这种弯曲在材料内部产生内应力,如果没有适当考虑,可能导致变形或失效。以一个简单的悬臂梁为例,来说明‘弯矩’的重要性。想象一根一端固定、另一端自由的梁,悬挂着一个重量。这个重量向下施加力量,在固定支撑处产生了一个‘弯矩’。这个矩是力量与施加点到支撑的距离的乘积。工程师必须计算‘弯矩’,以确保梁能够安全地承受负载,而不会出现过度挠曲或破裂的风险。在实际操作中,工程师使用各种方法来分析‘弯矩’。一种常见的方法是创建剪力和弯矩图,这些图形直观地表示‘弯矩’在梁的长度上如何变化。这些图帮助识别‘弯矩’最大的关键点,使工程师能够加强这些区域,以防止失效。此外,建筑中使用的材料在结构如何响应‘弯矩’方面也起着重要作用。不同材料具有不同的强度和刚度,这影响它们抵抗弯曲的能力。例如,钢梁可以承受比木梁更大的‘弯矩’,因为它们具有更高的抗拉强度。这就是为什么材料选择在结构设计中至关重要。进一步说,理解‘弯矩’不仅限于静态荷载。动态荷载,如风或地震活动,也会产生必须在设计过程中考虑的‘弯矩’。工程师必须考虑这些力量,以确保结构在其使用寿命内保持安全和功能性。总之,‘弯矩’的概念对确保结构的安全性和稳定性至关重要。无论是处理静态还是动态荷载,工程师都必须理解‘弯矩’如何影响材料和设计。通过准确计算和分析这些矩,我们可以创建不仅满足美学和功能要求,而且能够经受住各种力量考验的结构。‘弯矩’的研究是工程教育的基石,为未来的工程师提供了构建更安全世界所需的工具。