beam pattern

简明释义

方向特性

英英释义

A beam pattern refers to the spatial distribution of electromagnetic energy emitted from a source, such as an antenna or a light source, indicating how the intensity varies in different directions.

波束模式是指从源(如天线或光源)发射的电磁能量的空间分布,表示在不同方向上强度如何变化。

例句

1.Engineers analyzed the beam pattern 波束模式 to optimize the radar's performance.

工程师分析了波束模式 beam pattern以优化雷达的性能。

2.The new antenna design improves the beam pattern 波束模式, allowing for better signal coverage.

新的天线设计改善了波束模式 beam pattern,使信号覆盖更好。

3.Adjusting the beam pattern 波束模式 can help reduce interference in crowded areas.

调整波束模式 beam pattern可以帮助减少拥挤区域的干扰。

4.A wider beam pattern 波束模式 is ideal for floodlights used in outdoor events.

更宽的波束模式 beam pattern非常适合用于户外活动的泛光灯。

5.The beam pattern 波束模式 of the laser was focused to achieve maximum precision.

激光的波束模式 beam pattern被聚焦以达到最大精度。

作文

In the realm of telecommunications and signal processing, the term beam pattern refers to the spatial distribution of power radiated by an antenna or a transmitter. Understanding the beam pattern is crucial for optimizing communication systems, as it directly influences signal strength and coverage area. A well-designed beam pattern can enhance the performance of wireless networks, ensuring that signals reach their intended destinations without excessive interference or loss. The beam pattern can be visualized as a three-dimensional shape that represents how an antenna directs its energy in various directions. This shape can vary significantly depending on the type of antenna used, whether it be omnidirectional, directional, or sectoral. For instance, an omnidirectional antenna has a beam pattern that radiates equally in all horizontal directions, making it ideal for covering large areas where uniform signal distribution is required. In contrast, a directional antenna focuses its energy in a specific direction, resulting in a narrower beam pattern that can achieve longer distances with greater signal strength.Moreover, the beam pattern is influenced by several factors, including the design of the antenna, its physical dimensions, and the frequency of the transmitted signal. Engineers often utilize simulation tools to predict the beam pattern before the physical construction of antennas, allowing them to make necessary adjustments to meet specific performance criteria. This predictive modeling is essential in applications such as satellite communications, where precise alignment and coverage are paramount.In practical applications, the importance of the beam pattern extends beyond just telecommunications. It plays a significant role in radar systems, where the ability to detect objects at varying distances and angles relies heavily on the radar's beam pattern. Similarly, in audio engineering, microphones exhibit distinct beam patterns that determine how they capture sound from different directions, impacting the overall quality of recordings.Furthermore, the concept of beam pattern is also relevant in the field of optics, particularly in laser technology. Lasers emit light in a highly directional manner, and the beam pattern of a laser indicates how the light intensity varies across different angles. This characteristic is vital for applications such as laser cutting or medical surgeries, where precision is critical.Ultimately, understanding and optimizing the beam pattern is essential for improving the efficiency and effectiveness of various technologies. As we continue to advance in fields such as wireless communication, radar, and optics, the significance of the beam pattern will only grow, making it a pivotal concept for engineers and scientists alike. By mastering the intricacies of beam pattern, we can pave the way for more robust and reliable technological solutions that enhance our daily lives. In conclusion, the beam pattern is not merely a technical term; it is a fundamental aspect of numerous technologies that shape our modern world. Whether in telecommunications, radar, audio engineering, or optics, understanding the beam pattern enables us to harness the full potential of these systems, ultimately leading to better performance and improved user experiences.

在电信和信号处理领域,术语波束模式指的是天线或发射器辐射的功率在空间中的分布。理解波束模式对于优化通信系统至关重要,因为它直接影响信号强度和覆盖范围。设计良好的波束模式可以增强无线网络的性能,确保信号在没有过多干扰或损失的情况下到达预定目的地。波束模式可以被视为一个三维形状,表示天线在不同方向上如何引导其能量。这个形状可能会因所使用的天线类型而显著变化,无论是全向天线、定向天线还是扇区天线。例如,全向天线的波束模式在所有水平方向上均匀辐射,非常适合于需要均匀信号分布的大面积覆盖。相反,定向天线则将其能量集中在特定方向,导致更窄的波束模式,能够以更大的信号强度实现更长的距离。此外,波束模式还受到多个因素的影响,包括天线的设计、物理尺寸和传输信号的频率。工程师们通常利用仿真工具来预测波束模式,在天线的实际构建之前,使他们能够进行必要的调整,以满足特定的性能标准。这种预测建模在卫星通信等应用中至关重要,在这些应用中,精确的对准和覆盖是至关重要的。在实际应用中,波束模式的重要性不仅限于电信。它在雷达系统中也起着重要作用,雷达在不同距离和角度探测物体的能力在很大程度上依赖于雷达的波束模式。类似地,在音频工程中,麦克风展现出不同的波束模式,决定了它们如何从不同方向捕捉声音,从而影响录音的整体质量。此外,波束模式的概念在光学领域,特别是在激光技术中也相关。激光以高度定向的方式发射光,激光的波束模式指示光强度在不同角度上的变化。这一特性对于激光切割或医疗手术等应用至关重要,其中精度至关重要。最终,理解和优化波束模式对提高各种技术的效率和有效性至关重要。随着我们在无线通信、雷达和光学等领域的不断进步,波束模式的重要性只会增加,使其成为工程师和科学家们的关键概念。通过掌握波束模式的复杂性,我们可以为开发更强大、更可靠的技术解决方案铺平道路,从而提升我们的日常生活。总之,波束模式不仅仅是一个技术术语;它是塑造我们现代世界的诸多技术的基本方面。无论是在电信、雷达、音频工程还是光学领域,理解波束模式使我们能够充分利用这些系统的潜力,最终带来更好的性能和改善用户体验。

相关单词

pattern

pattern详解:怎么读、什么意思、用法