sinusoid

简明释义

[ˈsaɪnəˌsɔɪd][ˈsaɪnəsɔɪd]

n. 正弦曲线

英英释义

A sinusoid is a mathematical curve that describes a smooth periodic oscillation, typically represented by the sine function or cosine function.

正弦曲线是一种数学曲线,描述了平滑的周期性振荡,通常由正弦函数或余弦函数表示。

单词用法

sinusoidal pattern

正弦模式

sinusoid representation

正弦曲线表示

sinusoid in mathematics

数学中的正弦曲线

sinusoid signal

正弦信号

sinusoid graph

正弦图

sinusoidal motion

正弦运动

同义词

sine wave

正弦波

The sound waves can be represented as a sine wave.

声波可以表示为正弦波。

oscillation

振荡

The oscillation of the pendulum follows a sinusoidal pattern.

摆的振荡遵循正弦曲线模式。

waveform

波形

In electronics, the output is often a sinusoidal waveform.

在电子学中,输出通常是正弦波形。

反义词

step function

阶跃函数

The step function is used to model situations where a quantity changes abruptly.

阶跃函数用于模拟数量突然变化的情况。

discrete function

离散函数

Discrete functions are often used in computer science to represent algorithms that operate on distinct values.

离散函数常用于计算机科学中,表示对离散值操作的算法。

例句

1.The computer simulation on stochastic road irregularities is performed based on the sinusoid superposition method.

在正弦波叠加模型的基础上进行了随机路面谱的计算机模拟。

2.The measurement method of sinusoid parameters is presented.

给出了一种同时测量正弦波参数的方法。

3.Constant current charging by switch control is the main method to generate non-sinusoid oscillation waveform.

采用开关元件控制的恒流充放电是产生稳定非正弦振荡波的主要方法。

4.Results There was no difference of the weight and the form of cell and sinusoid under the LM in pituitary.

结果各组垂体重量及光镜下窦样毛细血管和细胞均无明显差异。

5.Conclusions: in vitro sinusoid endothelial cells could spontaneously immortalize. Some biological characteristics of immortalized cells changed.

结论:肝窦状内皮细胞在体外培养条件下自发永生化。

6.The FFT is a match filter for sinusoid signal, and the band width of the match filter will decrease with increase in integrated time .

FFT对于正弦信号而言是匹配滤波器,随着积累时间的增加匹配滤波器的带宽会随之减少。

7.This paper introduces a new algorithm called CMP (consistent matching pursuit) to solve the sinusoid modeling, which is gaining more and more interests.

正弦波模型作为其中的一种解决方法,正引起越来越多的重视。

8.The method of digit synthesis for sinusoid signal is studied, also a new digit synthesis method is advanced.

对正弦信号数字合成方法进行了研究,并提出了一种新的数字合成方法。

9.In electrical engineering, alternating current (AC) is often modeled using a sinusoid.

在电气工程中,交流电(AC)通常用正弦波建模。

10.The sinusoid function is essential in Fourier analysis for signal processing.

在信号处理的傅里叶分析中,正弦波函数是必不可少的。

11.The sound wave produced by a tuning fork can be approximated by a sinusoid.

调音叉产生的声波可以用正弦波来近似。

12.When analyzing vibrations, engineers often refer to the sinusoid to describe the oscillation pattern.

在分析振动时,工程师通常提到正弦波来描述振荡模式。

13.The graph of a simple harmonic motion can be represented as a sinusoid.

简单谐运动的图形可以表示为一个正弦波

作文

In the realm of mathematics and physics, the term sinusoid refers to a specific type of smooth periodic oscillation that can be described by the sine function. This fundamental shape is not only crucial in theoretical studies but also has practical applications across various fields. Understanding the properties of a sinusoid allows us to analyze waveforms, sound waves, and even alternating current in electrical engineering.A sinusoid can be represented mathematically as y = A sin(Bx + C) + D, where A represents the amplitude, B determines the frequency, C is the phase shift, and D is the vertical shift. The amplitude indicates how far the wave reaches from its central axis, while the frequency tells us how many cycles occur within a given time frame. The phase shift allows us to understand where the wave starts, and the vertical shift indicates how high or low the wave is positioned on the graph.The most recognizable characteristic of a sinusoid is its wave-like appearance, which is both continuous and smooth. This smoothness makes it an ideal model for many natural phenomena. For instance, when we consider sound waves, they often take the form of a sinusoid, allowing for a clear representation of pitch and volume. In music, different notes correspond to different frequencies of sinusoids, creating the harmonious sounds we enjoy.In addition to sound, sinusoids are found in light waves, which also exhibit periodic behavior. The study of these waves leads to the field of optics, where understanding sinusoids helps us grasp concepts such as interference and diffraction. The behavior of light can be modeled using sinusoids, revealing insights into how light interacts with various materials.Furthermore, in electrical engineering, alternating current (AC) is often represented as a sinusoid. The voltage in AC systems varies over time, creating a wave pattern that can be analyzed using the principles of sinusoids. This understanding is critical for designing electrical circuits and ensuring efficient energy transfer.In the context of signal processing, sinusoids play a vital role in analyzing and synthesizing signals. Techniques such as Fourier analysis utilize the concept of sinusoids to break down complex signals into simpler components. By understanding how sinusoids combine, engineers can filter signals, compress data, and even reconstruct audio and visual media.Moreover, the concept of sinusoids extends beyond pure mathematics and engineering. In biology, certain rhythmic patterns in heartbeats can be approximated by sinusoids, providing valuable insights into human health. Analyzing these rhythms helps medical professionals diagnose conditions related to heart function.In summary, the term sinusoid encompasses a wide range of applications and implications across various disciplines. Whether in mathematics, physics, engineering, or biology, sinusoids provide a foundational understanding of periodic behavior in nature. By studying sinusoids, we unlock the secrets of oscillation, waveforms, and the underlying patterns that govern our world. As we continue to explore these fascinating shapes, we gain deeper insights into both the theoretical and practical aspects of the phenomena that surround us.

在数学和物理学领域,术语sinusoid指的是一种特定类型的平滑周期性振荡,可以用正弦函数来描述。这种基本形状不仅在理论研究中至关重要,而且在各个领域都有实际应用。理解sinusoid的性质使我们能够分析波形、声波,甚至电气工程中的交流电。sinusoid可以用数学公式表示为y = A sin(Bx + C) + D,其中A代表振幅,B决定频率,C是相位偏移,D是垂直偏移。振幅表示波从其中心轴达到的高度,而频率则告诉我们在给定时间内发生了多少个周期。相位偏移使我们能够理解波的起始位置,而垂直偏移则表明波在图形上的高度或低度。sinusoid最显著的特征是它的波浪形外观,既连续又平滑。这种平滑性使它成为许多自然现象的理想模型。例如,当我们考虑声波时,它们通常呈现为sinusoid的形式,从而清晰地表示音高和音量。在音乐中,不同的音符对应于不同频率的sinusoids,创造出我们所享受的和谐声音。除了声音,光波也呈现出sinusoids的特征,这些波也表现出周期性行为。对这些波的研究导致了光学领域的发展,在那里,理解sinusoids帮助我们掌握干涉和衍射等概念。光的行为可以用sinusoids进行建模,揭示光与各种材料相互作用的洞察。此外,在电气工程中,交流电(AC)通常被表示为sinusoid。交流系统中的电压随时间变化,形成一种波形,可以利用sinusoids的原理进行分析。这种理解对于设计电路和确保高效能量传输至关重要。在信号处理的背景下,sinusoids在分析和合成信号方面发挥着重要作用。傅里叶分析等技术利用sinusoids的概念将复杂信号分解为更简单的组成部分。通过理解sinusoids如何结合,工程师可以过滤信号、压缩数据,甚至重建音频和视觉媒体。此外,sinusoids的概念超越了纯数学和工程学。在生物学中,心跳中的某些节律模式可以用sinusoids近似,从而提供有关人类健康的宝贵见解。分析这些节奏有助于医疗专业人员诊断与心脏功能相关的疾病。总之,术语sinusoid涵盖了各个学科中广泛的应用和影响。无论是在数学、物理、工程还是生物学中,sinusoids都提供了对自然中周期性行为的基础理解。通过研究sinusoids,我们揭示了振荡、波形以及支配我们世界的基本模式的秘密。随着我们继续探索这些迷人的形状,我们对围绕我们的现象的理论和实践方面获得了更深入的洞察。