rectilinearity
简明释义
英[rektɪlɪˈnɪərɪti]美[ˌrektɪˈlɪniərəti]
n. [数] 直线性
英英释义
The quality or state of being rectilinear; the property of forming straight lines. | 直线性的特征或状态;形成直线的性质。 |
单词用法
运动的直线性 | |
几何中的直线性 | |
实现直线性 | |
光的直线性 | |
直线性原理 | |
物理中的直线性 |
同义词
反义词
例句
1.This article, according to the classification of the quadric, under the 17 kinds normal form of the quadric, discussed the rectilinearity of the quadric respectively.
本文根据二次曲面方程的分类,分别讨论了二次曲面在十七种标准形式下的直纹性。
2.This article, according to the classification of the quadric, under the 17 kinds normal form of the quadric, discussed the rectilinearity of the quadric respectively.
本文根据二次曲面方程的分类,分别讨论了二次曲面在十七种标准形式下的直纹性。
3.The artist's work is characterized by a strict adherence to rectilinearity, giving it a unique visual appeal.
这位艺术家的作品以严格遵循直线性为特征,使其具有独特的视觉吸引力。
4.The architect emphasized the importance of rectilinearity in the design to create a modern aesthetic.
建筑师强调了设计中直线性的重要性,以创造现代美感。
5.Engineers must consider the rectilinearity of the components when designing machinery for precision tasks.
工程师在设计精密机械时必须考虑组件的直线性。
6.In physics, the rectilinearity of light rays is fundamental to understanding optical phenomena.
在物理学中,光线的直线性是理解光学现象的基础。
7.The surveyor measured the rectilinearity of the property lines to ensure accurate boundaries.
测量员测量了财产界限的直线性以确保边界的准确性。
作文
In the realm of geometry and physics, the concept of rectilinearity plays a crucial role in understanding the behavior of objects and their movement through space. The term rectilinearity refers to the property of being straight or moving in a straight line. This idea is fundamental not only in mathematics but also in various fields such as engineering, architecture, and even art. In this essay, I will explore the importance of rectilinearity in different contexts and how it shapes our perception of the world around us.Firstly, in mathematics, rectilinearity is essential for defining geometric figures and their properties. A straight line is the simplest form of a geometric shape, and it serves as the basis for more complex structures. For instance, in coordinate geometry, the equation of a line can be represented in the form y = mx + b, where m is the slope and b is the y-intercept. Understanding rectilinearity allows mathematicians to analyze relationships between different geometric figures and solve problems related to distances, angles, and areas. The principles of rectilinearity also extend to calculus, where the concept of tangent lines illustrates how curves can be approximated by straight lines at specific points.Moreover, in physics, rectilinearity is vital when studying motion. Newton's first law of motion states that an object at rest stays at rest, and an object in motion continues to move in a straight line unless acted upon by an external force. This principle highlights the significance of rectilinearity in understanding inertia and the forces that cause changes in an object's state of motion. Engineers rely on these principles to design vehicles, structures, and systems that operate efficiently in a straight path, ensuring safety and functionality in real-world applications.Additionally, the concept of rectilinearity influences architecture and design. Architects often emphasize straight lines and angular forms to create aesthetically pleasing and functional spaces. The use of rectilinearity in building design can convey a sense of order and stability, making structures more visually appealing and structurally sound. For example, modern architectural styles frequently incorporate large glass windows and clean lines, which reflect the beauty of rectilinearity. These designs not only enhance the visual aspects of buildings but also contribute to energy efficiency by maximizing natural light.In the realm of art, rectilinearity can be seen in various movements, particularly in minimalism and abstract art. Artists utilize straight lines and geometric shapes to create compositions that evoke a sense of harmony and balance. The emphasis on rectilinearity in art can challenge viewers to reconsider their perceptions of space and form. By focusing on straight lines and simple shapes, artists can communicate complex ideas and emotions without the distractions of intricate details.In conclusion, the concept of rectilinearity is a fundamental aspect of various disciplines, including mathematics, physics, architecture, and art. Its significance extends beyond mere definitions; it shapes our understanding of the world and influences how we interact with our environment. Whether it is through the study of geometric properties, the analysis of motion, the design of buildings, or the creation of art, rectilinearity remains a powerful concept that underscores the beauty and order inherent in both nature and human-made structures. As we continue to explore and appreciate the implications of rectilinearity, we gain a deeper insight into the complexities of our universe.
在几何和物理的领域中,直线性这一概念在理解物体及其在空间中运动的行为方面发挥着至关重要的作用。术语直线性指的是直的特性或沿直线移动的性质。这个理念不仅在数学中是基础,在工程、建筑乃至艺术等多个领域也同样重要。在这篇文章中,我将探讨直线性在不同背景下的重要性,以及它如何塑造我们对周围世界的感知。首先,在数学中,直线性对于定义几何图形及其属性至关重要。直线是几何形状中最简单的形式,它作为更复杂结构的基础。例如,在坐标几何中,直线的方程可以表示为y = mx + b,其中m是斜率,b是y截距。理解直线性使数学家能够分析不同几何图形之间的关系,并解决与距离、角度和面积相关的问题。直线性的原则也扩展到微积分中,切线的概念说明了曲线如何在特定点被直线近似。此外,在物理学中,直线性在研究运动时至关重要。牛顿的第一运动定律指出,一个静止的物体保持静止,而一个运动的物体会继续沿直线运动,除非受到外力的作用。这个原则强调了直线性在理解惯性和导致物体状态变化的力量中的重要性。工程师依靠这些原则设计车辆、结构和系统,使其有效地沿直线路径运行,从而确保安全和功能在实际应用中。此外,直线性的概念影响着建筑和设计。建筑师常常强调直线和角形,以创造美观且功能性的空间。在建筑设计中使用直线性可以传达一种秩序和稳定感,使结构在视觉上更具吸引力和结构上更牢固。例如,现代建筑风格经常融入大玻璃窗和干净的线条,反映出直线性的美。这些设计不仅增强了建筑的视觉元素,还通过最大化自然光来提高能源效率。在艺术领域,直线性可以在各种艺术运动中看到,特别是在极简主义和抽象艺术中。艺术家利用直线和几何形状创作出唤起和谐和平衡感的作品。对直线性的强调可以挑战观众重新考虑他们对空间和形式的感知。通过专注于直线和简单的形状,艺术家可以在不受复杂细节干扰的情况下传达复杂的思想和情感。总之,直线性的概念是数学、物理、建筑和艺术等多个学科的基本方面。它的重要性超越了单纯的定义;它塑造了我们对世界的理解,并影响着我们与环境的互动。无论是通过几何属性的研究、运动的分析、建筑的设计,还是艺术的创作,直线性始终是一个强大的概念,强调了自然和人造结构中固有的美和秩序。随着我们继续探索和欣赏直线性的含义,我们对宇宙复杂性的理解将更加深入。