azimuth and elevation output

简明释义

方位角和仰角数据输出

英英释义

Azimuth and elevation output refers to the angular measurements used to describe the direction of an object in the sky, where azimuth is the horizontal angle measured clockwise from a reference direction (usually true north), and elevation is the vertical angle measured from the horizontal plane.

方位角和仰角输出是指用于描述天空中物体方向的角度测量,其中方位角是从参考方向(通常是真北)顺时针测量的水平角度,而仰角是从水平面测量的垂直角度。

例句

1.The telescope's software provides real-time azimuth and elevation output to help astronomers locate celestial objects.

望远镜的软件提供实时的方位角和仰角输出,以帮助天文学家定位天体。

2.The radar system calculates the azimuth and elevation output to track moving targets effectively.

雷达系统计算方位角和仰角输出以有效追踪移动目标。

3.The GPS module provides the azimuth and elevation output necessary for precise positioning.

GPS模块提供精确定位所需的方位角和仰角输出

4.Engineers use the azimuth and elevation output data to optimize satellite dish alignment.

工程师使用方位角和仰角输出数据来优化卫星天线的对准。

5.In our drone's navigation system, the azimuth and elevation output is crucial for accurate flight paths.

在我们无人机的导航系统中,方位角和仰角输出对于准确的飞行路径至关重要。

作文

In the field of astronomy and navigation, understanding the concepts of direction and position is crucial. Two key terms that often come up in these discussions are azimuth and elevation output. The azimuth and elevation output refers to the angular measurements that help define the position of an object in the sky relative to an observer's location. Azimuth is the angle measured clockwise from the north point on the horizon, while elevation is the angle above the horizon. Together, these measurements provide a comprehensive way to pinpoint celestial bodies or other objects in three-dimensional space.To grasp the significance of azimuth and elevation output, consider how astronomers track stars and planets. When they want to observe a particular star, they need to know its exact location in the sky. By using instruments like telescopes equipped with digital readouts, astronomers can obtain the azimuth and elevation output for the star they wish to observe. For example, if a star has an azimuth of 120 degrees and an elevation of 30 degrees, it means that from the observer's viewpoint, the star is located 120 degrees clockwise from true north and 30 degrees above the horizon.The application of azimuth and elevation output is not limited to astronomy; it is also essential in various fields such as aviation, military operations, and even in smartphone technology. In aviation, pilots use these measurements to navigate and maintain their flight paths. When flying, a pilot may receive instructions that include specific azimuth and elevation output values to guide them towards a waypoint or destination. Similarly, military personnel rely on these measurements for targeting and reconnaissance purposes.Moreover, modern technology has made it easier to obtain azimuth and elevation output through GPS systems and mobile applications. For instance, many smartphone applications allow users to point their devices at the sky to identify stars and constellations, providing real-time azimuth and elevation output for those celestial objects. This integration of technology into everyday life has made astronomical observations more accessible to the general public, fostering a greater interest in the science of astronomy.Understanding azimuth and elevation output also plays a vital role in satellite communication. Satellites orbiting the Earth communicate with ground stations using specific angles of azimuth and elevation to ensure a stable connection. Engineers must calculate the optimal azimuth and elevation output for antennas to maintain effective communication links, which is crucial for services like television broadcasting, internet connectivity, and global positioning systems.In conclusion, the concept of azimuth and elevation output is fundamental in various disciplines that involve spatial orientation and navigation. Whether in astronomy, aviation, military operations, or modern technology, these measurements provide critical information for locating objects in the sky and ensuring accurate navigation. As we continue to advance in technology, the importance of understanding azimuth and elevation output will only increase, highlighting the interconnectedness of different fields and the significance of precise measurements in our daily lives.

在天文学和导航领域,理解方向和位置的概念至关重要。两个常常出现在这些讨论中的关键术语是方位角和仰角输出方位角和仰角输出指的是有助于定义天体相对于观察者位置的角度测量。方位角是从地平线上北点顺时针测量的角度,而仰角则是高于地平面的角度。这两个测量值一起提供了一种全面的方法来确定三维空间中天体或其他物体的位置。为了理解方位角和仰角输出的重要性,可以考虑天文学家如何追踪星星和行星。当他们想观察某颗特定的星星时,他们需要知道它在天空中的确切位置。通过使用配备数字读数的望远镜等仪器,天文学家可以获得他们希望观察的星星的方位角和仰角输出。例如,如果一颗星星的方位角为120度,仰角为30度,这意味着从观察者的视角来看,这颗星星位于从真北顺时针120度和高于地平面30度的位置。方位角和仰角输出的应用不仅限于天文学;它在航空、军事行动甚至智能手机技术等多个领域也至关重要。在航空领域,飞行员使用这些测量值进行导航并保持飞行路径。当飞行时,飞行员可能会收到包括特定方位角和仰角输出值的指令,以引导他们前往航路点或目的地。同样,军事人员依赖这些测量值进行目标定位和侦察。此外,现代技术使得通过GPS系统和移动应用程序更容易获得方位角和仰角输出。例如,许多智能手机应用允许用户将设备指向天空以识别星星和星座,提供实时的方位角和仰角输出。这种技术与日常生活的结合使天文观察对公众更加可及,促进了人们对天文学科学的更大兴趣。理解方位角和仰角输出在卫星通信中也发挥着重要作用。绕地球轨道运行的卫星通过特定的方位角和仰角与地面站进行通信,以确保稳定的连接。工程师必须计算天线的最佳方位角和仰角输出以维持有效的通信链路,这对电视广播、互联网连接和全球定位系统等服务至关重要。总之,方位角和仰角输出的概念在涉及空间定位和导航的各个学科中都是基础。无论是在天文学、航空、军事行动还是现代技术中,这些测量值都提供了定位天空中物体和确保准确导航的关键信息。随着我们在技术上的不断进步,理解方位角和仰角输出的重要性只会增加,突显出不同领域之间的相互联系以及精确测量在我们日常生活中的重要性。

相关单词

azimuth

azimuth详解:怎么读、什么意思、用法

and

and详解:怎么读、什么意思、用法

output

output详解:怎么读、什么意思、用法