atomic clock time
简明释义
原子时
英英释义
例句
1.In scientific experiments, researchers must sync their devices to atomic clock time 原子钟时间 for precise measurements.
在科学实验中,研究人员必须将设备同步到atomic clock time 原子钟时间以获得精确的测量。
2.The satellite systems rely on atomic clock time 原子钟时间 to maintain accurate positioning.
卫星系统依赖于atomic clock time 原子钟时间来保持准确的定位。
3.To ensure that all computers in the network are synchronized, we use atomic clock time 原子钟时间 as a reference.
为了确保网络中的所有计算机同步,我们使用atomic clock time 原子钟时间作为参考。
4.Many digital watches claim to use atomic clock time 原子钟时间 for accuracy, but they often just sync with a server.
许多数字手表声称使用atomic clock time 原子钟时间来保证准确性,但它们通常只是与服务器同步。
5.The global positioning system (GPS) depends on atomic clock time 原子钟时间 to provide real-time location data.
全球定位系统(GPS)依赖于atomic clock time 原子钟时间来提供实时位置数据。
作文
In our modern world, timekeeping is an essential aspect of daily life. From scheduling appointments to coordinating international flights, accurate time measurement is crucial. One of the most precise methods of measuring time is through the use of atomic clocks. The concept of atomic clock time (原子钟时间) has revolutionized the way we understand and utilize time. Atomic clocks operate on the principle of measuring the vibrations of atoms, particularly cesium or rubidium, which oscillate at incredibly consistent frequencies. This consistency allows atomic clocks to maintain an accuracy that is unmatched by traditional mechanical or quartz clocks.The significance of atomic clock time (原子钟时间) extends beyond just keeping time; it plays a vital role in various fields such as telecommunications, global positioning systems (GPS), and scientific research. For instance, GPS satellites rely on the precision of atomic clocks to provide accurate location data. Without the exact timing provided by these clocks, our navigation systems would be significantly less effective, leading to potential errors in distance calculations.Moreover, the definition of a second has been redefined based on atomic clock time (原子钟时间). In 1967, the International System of Units (SI) adopted the definition of a second as the duration of 9,192,631,770 cycles of radiation corresponding to the transition between two hyperfine levels of the ground state of the cesium-133 atom. This definition highlights how deeply integrated atomic timekeeping is within our scientific framework.The advent of atomic clock time (原子钟时间) also raises interesting philosophical questions about the nature of time itself. Traditionally, time was perceived as a continuous flow, marked by the rising and setting of the sun or the ticking of a clock. However, with atomic clocks, we can measure time in infinitesimally small units, challenging our perceptions and understanding of temporal existence. This precision leads to discussions about time dilation, as predicted by Einstein's theory of relativity, where time can appear to move slower or faster depending on the relative speed of observers.In addition to its scientific importance, atomic clock time (原子钟时间) has practical implications in everyday life. Financial markets around the world rely on synchronized time to execute trades accurately. Even a millisecond difference can result in significant financial gains or losses. Similarly, online transactions and digital communications depend on precise timing to ensure data integrity and security. As technology continues to advance, the reliance on atomic clock time (原子钟时间) will only grow stronger.Looking ahead, the future of atomic clock time (原子钟时间) appears promising. Researchers are continually working on developing even more accurate atomic clocks, including optical lattice clocks, which promise to push the boundaries of time measurement further. These advancements could lead to new discoveries in fundamental physics, enhance global communication systems, and improve our understanding of the universe.In conclusion, atomic clock time (原子钟时间) is not just a technical advancement; it is a profound shift in our understanding of time itself. Its implications span across various domains, from science to everyday life, highlighting the interconnectedness of precision and practicality in our modern society. As we continue to explore the depths of time measurement, we are reminded of the intricate relationship between technology and our perception of reality.
在我们现代世界中,时间管理是日常生活的重要方面。从安排约会到协调国际航班,准确的时间测量至关重要。测量时间的最精确方法之一是通过使用原子钟。原子钟时间(atomic clock time)的概念彻底改变了我们理解和利用时间的方式。原子钟的工作原理是测量原子的振动,特别是铯或铷,这些原子以令人难以置信的一致频率振荡。这种一致性使得原子钟保持无与伦比的准确性,超越传统机械钟或石英钟。原子钟时间(atomic clock time)的重要性不仅仅体现在计时上;它在电信、全球定位系统(GPS)和科学研究等多个领域发挥着至关重要的作用。例如,GPS卫星依赖于原子钟的精确性来提供准确的位置数据。如果没有这些钟表提供的精确时间,我们的导航系统将显著降低效率,可能导致距离计算中的错误。此外,秒的定义已经根据原子钟时间(atomic clock time)进行了重新定义。在1967年,国际单位制(SI)采用了秒的定义,即铯-133原子基态两个超细能级之间的辐射周期的持续时间为9,192,631,770个周期。这个定义强调了原子计时在我们科学框架中的深度整合。原子钟时间(atomic clock time)的出现也引发了关于时间本质的有趣哲学问题。传统上,时间被视为一种连续流动,由太阳的升起和落下或钟表的滴答声标记。然而,通过原子钟,我们可以测量时间的微小单位,挑战我们对时间存在的感知。这种精确性引发了关于时间膨胀的讨论,这是爱因斯坦相对论所预测的现象,在此情况下,时间可能会因观察者的相对速度而显得更慢或更快。除了科学的重要性之外,原子钟时间(atomic clock time)在日常生活中也具有实际意义。全球金融市场依赖同步时间来准确执行交易。即使是一毫秒的差异,也可能导致重大的财务收益或损失。同样,在线交易和数字通信依赖于精确的时间来确保数据的完整性和安全性。随着技术的不断进步,对原子钟时间(atomic clock time)的依赖只会变得更加强烈。展望未来,原子钟时间(atomic clock time)的前景看起来非常可观。研究人员不断致力于开发更精确的原子钟,包括光学晶格钟,这有望进一步推动时间测量的界限。这些进步可能会导致基础物理学的新发现,增强全球通信系统,并改善我们对宇宙的理解。总之,原子钟时间(atomic clock time)不仅仅是技术上的进步;它是我们对时间本身理解的深刻转变。它的影响跨越多个领域,从科学到日常生活,突显了我们现代社会中精确性与实用性之间的相互联系。随着我们继续探索时间测量的深度,我们被提醒技术与我们现实感知之间复杂的关系。
相关单词