artificial radioactivity
简明释义
人工辐射能
英英释义
例句
1.The process of inducing artificial radioactivity 人造放射性 involves bombarding stable nuclei with neutrons.
诱导人造放射性的过程涉及用中子轰击稳定核。
2.The discovery of artificial radioactivity 人造放射性 opened new avenues in nuclear physics.
人造放射性的发现为核物理学开辟了新的领域。
3.One of the applications of artificial radioactivity 人造放射性 is in cancer treatment through radiation therapy.
人造放射性的一个应用是在放射治疗中用于癌症治疗。
4.Scientists use artificial radioactivity 人造放射性 to create isotopes for medical imaging.
科学家利用人造放射性来制造医学成像所需的同位素。
5.Researchers are studying the effects of artificial radioactivity 人造放射性 on human cells.
研究人员正在研究人造放射性对人类细胞的影响。
作文
The discovery of artificial radioactivity has significantly advanced our understanding of nuclear physics and its applications in various fields. Artificial radioactivity refers to the phenomenon where stable isotopes are transformed into radioactive isotopes through nuclear reactions induced by bombarding them with particles such as neutrons or protons. This process was first observed in the 1930s by scientists Irène Joliot-Curie and Frédéric Joliot-Curie, who were able to create new radioactive elements by bombarding beryllium with alpha particles. Their groundbreaking work not only unveiled the potential of artificial radioactivity but also paved the way for numerous scientific advancements.One of the most significant implications of artificial radioactivity is its application in medicine, particularly in the field of nuclear medicine. Radioactive isotopes produced through artificial means are used extensively in diagnostic imaging and treatment. For instance, technetium-99m, a radioisotope generated through artificial radioactivity, is widely used in medical imaging to diagnose various conditions, including cancer and heart disease. The ability to create specific isotopes on demand has revolutionized the way medical professionals approach diagnosis and treatment, allowing for more targeted therapies and improved patient outcomes.Moreover, artificial radioactivity plays a vital role in the field of research. It enables scientists to study the behavior of materials at the atomic level by using radioactive tracers. These tracers can help in understanding complex biological processes, tracking environmental changes, and even exploring the mechanisms of diseases. The insights gained from such studies have far-reaching consequences, influencing everything from environmental policy to the development of new pharmaceuticals.In addition to its medical and research applications, artificial radioactivity is also crucial in the energy sector. Nuclear reactors utilize the principles of artificial radioactivity to generate energy through controlled fission reactions. By manipulating the isotopes present in the reactor, engineers can produce a steady supply of energy while minimizing waste. This technology offers a promising alternative to fossil fuels, contributing to the global effort to reduce carbon emissions and combat climate change.Despite its numerous benefits, the use of artificial radioactivity raises ethical and safety concerns. The handling and disposal of radioactive materials require strict regulations to prevent contamination and exposure. Public perception of nuclear technology can be influenced by historical events, such as nuclear accidents, leading to fear and resistance against its use. Therefore, it is essential for scientists and policymakers to communicate effectively about the risks and benefits associated with artificial radioactivity to foster public trust and ensure safe practices.In conclusion, artificial radioactivity has transformed various fields, from medicine to energy production. Its ability to create radioactive isotopes has opened up new avenues for research and innovation. However, as we continue to harness the power of artificial radioactivity, we must remain vigilant about safety and ethical considerations. The future of this technology holds immense potential, and with responsible management, it can lead to significant advancements that benefit society as a whole.
“人工放射性”这一发现显著推动了我们对核物理及其在各个领域应用的理解。“人工放射性”是指通过用中子或质子等粒子轰击稳定同位素,使其转变为放射性同位素的现象。这一过程首次在20世纪30年代被科学家伊伦·居里和弗雷德里克·居里观察到,他们通过用α粒子轰击铍成功创造出新的放射性元素。他们的开创性工作不仅揭示了“人工放射性”的潜力,也为众多科学进步铺平了道路。“人工放射性”的一个重要意义在于其在医学领域的应用,特别是在核医学方面。通过人工手段产生的放射性同位素被广泛用于诊断成像和治疗。例如,锝-99m是一种通过“人工放射性”生成的放射性同位素,被广泛用于医学成像,以诊断包括癌症和心脏病在内的各种疾病。按需创造特定同位素的能力彻底改变了医疗专业人员对诊断和治疗的方式,使得更具针对性的疗法和改善患者结果成为可能。此外,“人工放射性”在研究领域也发挥着至关重要的作用。它使科学家能够通过使用放射性示踪剂来研究材料在原子层面的行为。这些示踪剂可以帮助理解复杂的生物过程、追踪环境变化,甚至探索疾病机制。从这些研究中获得的见解具有深远的影响,影响从环境政策到新药研发的方方面面。除了在医学和研究中的应用外,“人工放射性”在能源领域也至关重要。核反应堆利用“人工放射性”的原理,通过受控裂变反应产生能量。通过操纵反应堆中的同位素,工程师可以在最小化废物的同时产生稳定的能量供应。这项技术为化石燃料提供了一个有前景的替代方案,促进了全球减少碳排放和应对气候变化的努力。尽管“人工放射性”有许多好处,但其使用也引发了伦理和安全方面的担忧。放射性材料的处理和处置需要严格的法规,以防止污染和暴露。公众对核技术的看法可能会受到历史事件(如核事故)的影响,从而导致恐惧和抵制。因此,科学家和政策制定者必须有效地沟通与“人工放射性”相关的风险和收益,以促进公众信任并确保安全实践。总之,“人工放射性”已改变了从医学到能源生产等多个领域。其创造放射性同位素的能力为研究和创新开辟了新的途径。然而,随着我们继续利用“人工放射性”的力量,我们必须对安全和伦理问题保持警惕。这项技术的未来蕴含着巨大的潜力,通过负责任的管理,它可以带来显著的进步,造福整个社会。
相关单词