approximate formula
简明释义
近似公式
英英释义
A mathematical expression that provides a value or result that is close to, but not exactly equal to, the true value. | 一种数学表达式,提供一个接近但不完全等于真实值的数值或结果。 |
例句
1.An approximate formula 近似公式 can be helpful when precise measurements are not available.
当没有精确测量时,近似公式 approximate formula 可以很有帮助。
2.In physics, we often use an approximate formula 近似公式 to calculate the trajectory of a projectile.
在物理学中,我们经常使用一个近似公式 approximate formula 来计算抛射物的轨迹。
3.For quick calculations, scientists often rely on an approximate formula 近似公式 instead of complex equations.
为了快速计算,科学家们通常依赖于一个近似公式 approximate formula 而不是复杂的方程。
4.The engineer provided an approximate formula 近似公式 for estimating the load capacity of the bridge.
工程师提供了一个近似公式 approximate formula 来估算桥梁的承载能力。
5.The approximate formula 近似公式 used in this study simplifies the analysis of data trends.
本研究中使用的近似公式 approximate formula 简化了数据趋势的分析。
作文
In the realm of mathematics and science, many complex problems can be simplified through the use of an approximate formula. An approximate formula is a mathematical expression that provides a close estimate of a value rather than an exact answer. This approach is particularly useful in situations where obtaining precise data is challenging or impossible due to various constraints. For instance, when calculating the trajectory of a projectile, the exact calculations may require extensive computational resources. Instead, scientists often rely on an approximate formula to predict the path of the projectile with sufficient accuracy for practical applications.The beauty of using an approximate formula lies in its ability to simplify complex equations. In physics, the motion of objects can be described using differential equations, which can be difficult to solve analytically. However, by applying an approximate formula, physicists can derive results that are good enough for most practical purposes. For example, the famous equation for the period of a simple pendulum is derived as T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. While this formula provides an excellent approximation for small angles, it becomes less accurate for larger angles. Nonetheless, it is widely used because it offers a straightforward way to calculate the period without delving into more complicated trigonometric functions.In engineering, approximate formulas are essential for design and analysis. Engineers often face time constraints and must make quick decisions based on available data. By utilizing approximate formulas, they can quickly assess the feasibility of a project without getting bogged down in intricate calculations. For instance, when designing a bridge, engineers might use an approximate formula to estimate the load-bearing capacity based on the materials used and the dimensions of the structure. This allows them to move forward with the design process while ensuring safety and functionality.Moreover, in fields such as economics, approximate formulas help analysts make predictions about market trends and consumer behavior. Economists often rely on models that incorporate various variables to forecast future economic conditions. However, these models can become overly complicated, leading to difficulties in interpretation. By employing approximate formulas, economists can create simpler models that still capture the essential dynamics of the economy, allowing for more accessible insights and recommendations for policymakers.Despite their utility, it is crucial to understand the limitations of approximate formulas. They are not universally applicable and may yield inaccurate results if the assumptions underlying the formula do not hold true in a specific context. For example, the approximate formula for the area of a circle (A = πr²) assumes a perfect circle. In real-world applications, imperfections in shape can lead to discrepancies between the estimated area and the actual area. Therefore, users of approximate formulas must be aware of the contexts in which these formulas are valid and exercise caution when interpreting their results.In conclusion, approximate formulas serve as invaluable tools across various disciplines, enabling practitioners to make informed decisions based on simplified calculations. While they provide a means to tackle complex problems efficiently, it is essential to recognize their limitations and apply them judiciously. As we continue to explore the intricacies of mathematics and science, the role of approximate formulas will undoubtedly remain significant, guiding us toward practical solutions in an increasingly complex world.
在数学和科学领域,许多复杂的问题可以通过使用近似公式来简化。近似公式是一个数学表达式,它提供了一个接近值的估计,而不是一个确切的答案。这种方法在获取精确数据因各种限制而具有挑战性或不可能的情况下特别有用。例如,在计算抛射物的轨迹时,精确的计算可能需要大量的计算资源。因此,科学家们常常依赖于近似公式来预测抛射物的路径,以便在实际应用中达到足够的准确性。使用近似公式的美在于它能够简化复杂的方程。在物理学中,物体的运动可以用微分方程来描述,这些方程可能很难解析求解。然而,通过应用近似公式,物理学家可以推导出结果,这些结果在大多数实际目的下足够好。例如,简单摆的周期著名公式为T = 2π√(L/g),其中T是周期,L是摆的长度,g是重力加速度。虽然这个公式对小角度提供了极好的近似,但对于较大角度的准确性就会降低。尽管如此,它仍然被广泛使用,因为它提供了一种直接的方法来计算周期,而无需深入复杂的三角函数。在工程领域,近似公式对于设计和分析至关重要。工程师们通常面临时间限制,必须根据可用数据快速做出决策。通过利用近似公式,他们可以迅速评估项目的可行性,而不必陷入复杂的计算之中。例如,在设计桥梁时,工程师可能会使用近似公式来估算结构的承载能力,基于所用材料和结构的尺寸。这使他们能够在确保安全和功能的同时推进设计过程。此外,在经济学等领域,近似公式帮助分析师预测市场趋势和消费者行为。经济学家通常依赖于包含各种变量的模型来预测未来的经济状况。然而,这些模型可能会变得过于复杂,导致解释困难。通过采用近似公式,经济学家可以创建更简单的模型,这些模型仍然捕捉到经济的基本动态,从而为政策制定者提供更易于理解的见解和建议。尽管它们具有实用性,但理解近似公式的局限性至关重要。它们并非普遍适用,如果公式背后的假设在特定上下文中不成立,可能会产生不准确的结果。例如,近似公式用于圆的面积(A = πr²)假设了一个完美的圆。在实际应用中,形状的不完美可能导致估算的面积与实际面积之间的差异。因此,使用近似公式的用户必须意识到这些公式有效的上下文,并在解释其结果时谨慎行事。总之,近似公式作为各个学科中不可或缺的工具,使从业者能够根据简化的计算做出明智的决策。虽然它们提供了一种有效应对复杂问题的方法,但认识到它们的局限性并谨慎使用是至关重要的。随着我们继续探索数学和科学的复杂性,近似公式的角色无疑将保持重要性,引导我们在日益复杂的世界中寻找实际解决方案。
相关单词