angular coordinate
简明释义
角坐标
英英释义
An angular coordinate is a measure of an angle used to specify the position of a point in a polar or spherical coordinate system. | 角坐标是用于在极坐标或球坐标系统中指定点位置的角度度量。 |
例句
1.In polar coordinates, the position of a point can be described using its radius and an angular coordinate 角坐标.
在极坐标中,点的位置可以用半径和一个角坐标 角坐标来描述。
2.In robotics, the movement of a robotic arm can be described using angular coordinates 角坐标 for each joint.
在机器人技术中,机器手臂的运动可以使用每个关节的角坐标 角坐标来描述。
3.To convert between Cartesian and polar coordinates, you need to calculate the angular coordinate 角坐标 using trigonometric functions.
要在笛卡尔坐标系和极坐标系之间转换,您需要使用三角函数计算角坐标 角坐标。
4.The angular coordinate 角坐标 is often measured in degrees or radians.
通常以度或弧度来测量角坐标 角坐标。
5.Astronomers often use angular coordinates 角坐标 to specify the location of stars in the night sky.
天文学家常常使用角坐标 角坐标来指定星星在夜空中的位置。
作文
In the field of mathematics and physics, understanding the concept of angular coordinate is crucial for various applications, especially in fields such as astronomy, robotics, and navigation. An angular coordinate refers to a measure that indicates the position of a point in a circular or spherical system relative to a reference direction. It is typically expressed in degrees or radians and is used alongside radial coordinates to define a point's location in polar or spherical coordinate systems.To elaborate on this concept, let’s consider an example from astronomy. When astronomers locate stars in the sky, they often use a system of angular coordinates. The celestial sphere is an imaginary sphere surrounding the Earth, and the positions of stars are given in terms of their angular coordinates, which include right ascension and declination. Right ascension is akin to longitude on Earth, while declination is similar to latitude. This system allows astronomers to pinpoint the exact location of a star in the vastness of space, making it easier to study and observe celestial phenomena.In robotics, the use of angular coordinates is essential for controlling the movement of robotic arms. Each joint of a robotic arm can be described using angular coordinates, which dictate the angle at which each joint should rotate to achieve a desired position. By manipulating these angular coordinates, engineers can program robots to perform intricate tasks, such as assembling products or performing surgery. This application highlights how angular coordinates bridge the gap between theoretical mathematics and practical engineering solutions.Furthermore, in navigation, angular coordinates play a vital role in determining one’s position on the Earth. Global Positioning System (GPS) technology relies on a network of satellites that transmit signals containing angular coordinates. By calculating the time it takes for these signals to reach a receiver, the GPS device can determine its location in terms of latitude and longitude, which are essentially angular coordinates on the Earth’s surface. This information is crucial for various applications, including mapping, tracking, and route planning.The significance of angular coordinates extends beyond technical fields; it also has philosophical implications. The way we perceive our place in the universe can be influenced by our understanding of spatial relationships defined by angular coordinates. For instance, when considering the vastness of space, the use of angular coordinates can help us comprehend our position relative to other celestial bodies, fostering a deeper appreciation of our existence within the cosmos.In conclusion, the concept of angular coordinates is fundamental across multiple disciplines, from astronomy to robotics and navigation. Its ability to define locations in circular and spherical systems makes it an indispensable tool for scientists, engineers, and navigators alike. As technology continues to advance, the importance of mastering angular coordinates will only grow, highlighting the need for education and research in this area. Understanding angular coordinates not only enhances our scientific knowledge but also enriches our perspective on the world and our place within it.
在数学和物理学领域,理解角坐标的概念对于各种应用至关重要,特别是在天文学、机器人技术和导航等领域。角坐标是指一种度量,表示一个点在圆形或球形系统中相对于参考方向的位置。它通常用度数或弧度表示,并与径向坐标一起用于定义点在极坐标或球坐标系统中的位置。为了详细说明这一概念,让我们考虑一个来自天文学的例子。当天文学家在天空中定位星星时,他们经常使用一套角坐标系统。天球是一个想象中的包围地球的球体,星星的位置以它们的角坐标给出,包括赤经和赤纬。赤经类似于地球上的经度,而赤纬则类似于纬度。这个系统使天文学家能够精确定位星星在广袤的宇宙中的位置,从而更容易研究和观察天体现象。在机器人技术中,角坐标的使用对于控制机器人手臂的运动至关重要。机器手臂的每个关节都可以用角坐标来描述,这些坐标决定了每个关节应该旋转的角度,以达到所需的位置。通过操控这些角坐标,工程师可以编程机器人执行复杂的任务,例如组装产品或进行手术。这一应用突显了角坐标如何弥合理论数学与实际工程解决方案之间的差距。此外,在导航中,角坐标在确定一个人在地球上的位置时发挥着重要作用。全球定位系统(GPS)技术依赖于一个卫星网络,这些卫星发射包含角坐标的信号。通过计算这些信号到达接收器所需的时间,GPS设备可以根据纬度和经度确定其位置,这本质上是在地球表面上的角坐标。这些信息对于各种应用至关重要,包括制图、跟踪和路线规划。角坐标的重要性超越了技术领域;它也具有哲学意义。我们对宇宙中自身位置的感知可能会受到我们对由角坐标定义的空间关系的理解的影响。例如,当考虑宇宙的浩瀚时,使用角坐标可以帮助我们理解自己相对于其他天体的位置,从而加深我们对自身存在于宇宙中的欣赏。总之,角坐标的概念在多个学科中都是基础,从天文学到机器人技术和导航。它在圆形和球形系统中定义位置的能力使其成为科学家、工程师和导航员不可或缺的工具。随着技术的不断进步,掌握角坐标的重要性只会增加,这突显了在这一领域进行教育和研究的必要性。理解角坐标不仅增强了我们的科学知识,也丰富了我们对世界及其在其中位置的视角。
相关单词