angular amplitude

简明释义

角振幅

英英释义

Angular amplitude refers to the maximum angle of displacement from a reference position in a periodic motion, often measured in radians or degrees.

角振幅是指在周期性运动中相对于参考位置的最大位移角度,通常以弧度或度数来衡量。

例句

1.In robotics, the angular amplitude 角幅 affects the range of motion of robotic arms.

在机器人技术中,角幅影响机器手臂的运动范围。

2.The angular amplitude 角幅 of a wave can influence its energy and propagation speed.

波的角幅可以影响其能量和传播速度。

3.The angular amplitude 角幅 of the pendulum determines how far it swings from its resting position.

摆的角幅决定了它从静止位置摆动的距离。

4.To optimize performance, engineers must consider the angular amplitude 角幅 in their designs.

为了优化性能,工程师必须在设计中考虑角幅

5.The angular amplitude 角幅 of the speaker's cone impacts sound quality.

扬声器锥体的角幅影响音质。

作文

In the realm of physics and engineering, understanding the concept of angular amplitude is crucial for analyzing various phenomena related to oscillations and waves. The term angular amplitude refers to the maximum angle from the equilibrium position that an object can achieve during its oscillation. This concept is particularly important in the study of harmonic motion, where it helps to define the extent of movement of a pendulum or a spring system. In essence, the angular amplitude provides insight into how far an object will swing away from its resting state, which is essential for predicting its behavior over time.To illustrate this concept, let us consider a simple pendulum. When released from a certain height, the pendulum swings back and forth around its pivot point. The maximum angle that the pendulum reaches on either side of its vertical line is known as the angular amplitude. This angle determines not only the range of motion of the pendulum but also influences the period of oscillation. A larger angular amplitude generally results in a longer period, meaning it takes more time for the pendulum to complete one full swing.The significance of angular amplitude extends beyond simple pendulums. It plays a vital role in various applications, including engineering designs and the development of musical instruments. For instance, in the design of bridges, engineers must account for the angular amplitude of vibrations caused by wind or seismic activity. Understanding these amplitudes helps ensure the stability and safety of structures under dynamic loads.Moreover, in the world of music, instruments like guitars and violins rely on the principles of angular amplitude to produce sound. The strings of these instruments vibrate at specific angles, creating sound waves that resonate with the air. The angular amplitude of these vibrations affects the volume and tone of the sound produced, showcasing the interconnectedness of physics and art.In conclusion, the concept of angular amplitude is not merely an abstract idea confined to textbooks; it has practical implications across various fields. From predicting the behavior of oscillating systems to ensuring the structural integrity of buildings and enhancing musical performances, understanding angular amplitude is essential for both scientists and engineers alike. As we continue to explore the complexities of motion and waves, the importance of grasping such concepts will only increase, highlighting the beauty of physics in our everyday lives.

在物理学和工程学领域,理解“角幅度”这一概念对于分析与振荡和波动相关的各种现象至关重要。术语“角幅度”指的是物体在振荡过程中可以达到的最大偏离平衡位置的角度。这个概念在研究谐波运动时尤为重要,它有助于定义摆或弹簧系统的运动范围。实质上,“角幅度”提供了对物体将从静止状态偏移多远的洞察,这对于预测其随时间变化的行为至关重要。为了说明这一概念,让我们考虑一个简单的摆。当从某个高度释放时,摆围绕其支点来回摆动。摆在其垂直线两侧达到的最大角度被称为“角幅度”。这个角度不仅决定了摆的运动范围,还影响振荡周期。较大的“角幅度”通常会导致较长的周期,这意味着摆完成一次完整摆动所需的时间更长。“角幅度”的重要性超越了简单的摆动。它在各种应用中发挥着至关重要的作用,包括工程设计和乐器开发。例如,在桥梁设计中,工程师必须考虑由风或地震活动引起的振动的“角幅度”。了解这些幅度有助于确保结构在动态负载下的稳定性和安全性。此外,在音乐世界中,吉他和小提琴等乐器依赖于“角幅度”的原理来产生声音。这些乐器的弦以特定的角度振动,产生与空气共振的声波。“角幅度”的振动影响了产生的声音的音量和音调,展示了物理学与艺术之间的相互联系。总之,“角幅度”的概念不仅仅是局限于教科书中的抽象思想;它在各个领域具有实际意义。从预测振荡系统的行为到确保建筑物的结构完整性,再到增强音乐表演的效果,理解“角幅度”对于科学家和工程师来说都是必不可少的。随着我们继续探索运动和波动的复杂性,掌握此类概念的重要性只会增加,突显了物理学在我们日常生活中的美丽。

相关单词

amplitude

amplitude详解:怎么读、什么意思、用法