angular acceleration

简明释义

角加速度

英英释义

Angular acceleration is the rate of change of angular velocity over time, typically measured in radians per second squared.

角加速度是角速度随时间变化的速率,通常以每秒平方弧度为单位测量。

例句

1.Engineers must consider angular acceleration 角加速度 when designing rotating machinery to ensure safety and efficiency.

工程师在设计旋转机械时,必须考虑角加速度以确保安全和效率。

2.The formula for calculating angular acceleration 角加速度 is the change in angular velocity over time.

计算角加速度的公式是角速度的变化除以时间。

3.The wheel of the bicycle experiences an increase in angular acceleration 角加速度 when the rider pedals harder.

当骑自行车的人用力踩踏板时,自行车轮子经历了增加的角加速度

4.As the car turns, its tires experience a change in angular acceleration 角加速度 that affects traction.

当汽车转弯时,其轮胎经历的角加速度变化会影响抓地力。

5.In a spinning ride at the amusement park, the angular acceleration 角加速度 can make riders feel heavier as the speed increases.

在游乐园的旋转设施中,角加速度会让乘客在速度增加时感到更重。

作文

Angular acceleration is a fundamental concept in physics and engineering that describes how quickly an object rotates or changes its angular velocity over time. To understand this better, let's break down the term. The word 'angular' relates to angles and rotation, while 'acceleration' refers to the rate of change of velocity. Therefore, angular acceleration (角加速度) is the measure of how fast an object is spinning faster or slower around a specific axis. This concept is crucial in various applications, from designing roller coasters to understanding the motion of planets in space.In everyday life, we encounter examples of angular acceleration (角加速度) frequently. For instance, when a figure skater pulls in their arms during a spin, they rotate faster due to the conservation of angular momentum. Their angular acceleration (角加速度) increases as they adjust their body position, demonstrating how changes in shape can significantly affect rotational speed.In engineering, understanding angular acceleration (角加速度) is vital for the design of machinery and vehicles. For example, in automotive engineering, the performance of a car is often evaluated based on its ability to accelerate not just linearly but also rotationally. Engineers must calculate the angular acceleration (角加速度) of the wheels to ensure that the vehicle can handle turns effectively without losing grip or control.Moreover, in the field of robotics, angular acceleration (角加速度) plays a critical role in motion control. Robotic arms and drones rely on precise calculations of angular acceleration (角加速度) to execute movements accurately and efficiently. If a robot arm needs to pick up an object, it must calculate the required angular acceleration (角加速度) to move to the desired angle quickly without overshooting or causing instability.In physics classrooms, students are often introduced to the formulas that represent angular acceleration (角加速度). The most common formula is α = Δω / Δt, where α represents angular acceleration (角加速度), Δω is the change in angular velocity, and Δt is the change in time. Understanding this formula allows students to solve problems related to rotational motion, deepening their grasp of dynamics.Furthermore, the relationship between angular acceleration (角加速度) and torque is another essential aspect to consider. Torque is the rotational equivalent of linear force, and it directly influences angular acceleration (角加速度). According to Newton's second law for rotation, τ = Iα, where τ is torque, I is the moment of inertia, and α is angular acceleration (角加速度). This equation shows that the greater the torque applied to an object, the greater its angular acceleration (角加速度) will be, assuming the moment of inertia remains constant.In conclusion, angular acceleration (角加速度) is a vital concept that connects various fields of study, including physics, engineering, and robotics. Its implications are vast, affecting everything from sports performance to advanced technology. By comprehending angular acceleration (角加速度), we can better appreciate the mechanics behind motion and the principles that govern our world. As we continue to explore this topic, we uncover the intricate relationships that define how objects move and interact in a rotating environment.

角加速度是物理学和工程学中的一个基本概念,描述了一个物体如何快速旋转或随时间变化其角速度。为了更好地理解这一点,让我们分解一下这个术语。“角”与角度和旋转有关,而“加速度”则指的是速度变化的速率。因此,angular acceleration(角加速度)是测量一个物体围绕特定轴旋转速度变化的指标。这个概念在各种应用中至关重要,从设计过山车到理解太空中行星的运动。在日常生活中,我们经常遇到angular acceleration(角加速度)的例子。例如,当花样滑冰运动员在旋转时收紧手臂,他们的旋转速度会加快,这归因于角动量守恒。由于调整身体姿势,他们的angular acceleration(角加速度)增加,展示了形状变化如何显著影响旋转速度。在工程领域,理解angular acceleration(角加速度)对机械和车辆的设计至关重要。例如,在汽车工程中,评估汽车性能时不仅要考虑线性加速,还要考虑旋转加速。工程师必须计算车轮的angular acceleration(角加速度),以确保车辆能够有效处理转弯而不失去抓地力或控制。此外,在机器人技术领域,angular acceleration(角加速度)在运动控制中扮演着关键角色。机器人手臂和无人机依赖精确计算angular acceleration(角加速度)来准确高效地执行动作。如果机器人手臂需要拾起物体,它必须计算所需的angular acceleration(角加速度),以快速移动到所需角度,而不出现超调或导致不稳定。在物理课堂上,学生们通常会接触到代表angular acceleration(角加速度)的公式。最常见的公式是α = Δω / Δt,其中α表示angular acceleration(角加速度),Δω是角速度的变化,Δt是时间的变化。理解这个公式使学生能够解决与旋转运动相关的问题,加深他们对动力学的理解。此外,angular acceleration(角加速度)与扭矩之间的关系是另一个重要的方面。扭矩是旋转等效于线性力的量,它直接影响angular acceleration(角加速度)。根据牛顿第二定律的旋转形式,τ = Iα,其中τ是扭矩,I是转动惯量,α是angular acceleration(角加速度)。这个方程表明,施加在物体上的扭矩越大,其angular acceleration(角加速度)就越大,前提是转动惯量保持不变。总之,angular acceleration(角加速度)是一个连接多个研究领域的重要概念,包括物理学、工程学和机器人技术。它的影响范围广泛,影响着从运动表现到先进技术的方方面面。通过理解angular acceleration(角加速度),我们可以更好地欣赏运动背后的力学原理以及支配我们世界的原则。随着我们继续探索这一主题,我们揭示了定义物体如何在旋转环境中运动和相互作用的复杂关系。

相关单词

acceleration

acceleration详解:怎么读、什么意思、用法