neutrino

简明释义

[njuːˈtriːnəʊ][nuːˈtriːnoʊ]

【核物理学】中微子

复 数 n e u t r i n o s

英英释义

A neutrino is a subatomic particle that has no electric charge and a very small mass, which is produced in nuclear reactions, such as those in the sun or during radioactive decay.

中微子是一种没有电荷且质量极小的亚原子粒子,通常在核反应中产生,例如太阳内部的反应或放射性衰变过程中。

单词用法

neutrino physics

中微子物理

neutrino mass

中微子质量

neutrino telescope

中微子望远镜

neutrino experiment

中微子实验

neutrino emission

中微子发射

detect neutrinos

探测中微子

study neutrinos

研究中微子

produce neutrinos

产生中微子

observe neutrinos

观察中微子

interact with neutrinos

与中微子相互作用

同义词

subatomic particle

亚原子粒子

Neutrinos are a type of subatomic particle that are produced in nuclear reactions.

中微子是一种在核反应中产生的亚原子粒子。

fermion

费米子

Fermions, including neutrinos, obey the Pauli exclusion principle.

包括中微子在内的费米子遵循泡利不相容原理。

反义词

antineutrino

反微子

Antineutrinos are produced in nuclear reactions, such as those in nuclear reactors.

反微子在核反应中产生,例如核反应堆中的反应。

charged particle

带电粒子

Charged particles, like electrons and protons, interact electromagnetically.

带电粒子,如电子和质子,会通过电磁力相互作用。

例句

1.To detect artificial neutrinos using existing telescopes means screening out the natural neutrino background.

要利用现有望远镜检测有来自智慧生物的中微子意味着要滤掉来自天然中微子的噪音背景。

2.These are also the only type of neutrino thought capable of escaping the brane.

这些也是唯一类型的中微子,被认为可以从膜上逃脱。

3.So Enrico Fermi called them "a little neutron," in Italian is neutrino.

因此,恩里科·费米把它们叫做‘小中子’,在意大利语中就是中微子的意思。

4.But neutrino physics could have some very big implications indeed.

但是,中微子物理可能实际上会有一些非常大的影响。

5.The start-up of the Daya Bay experiment comes hard on the heels of two other neutrino successes.

大亚湾的实验起步艰难,紧接着是另两个中微子的成功测定。

6.The team then fed the IceCube detector—86 cable strings that each contain 60 neutrino sensors—into the holes.

冰洞钻好以后,研究人员再将86根电缆组成的冰立方探测器放入洞中,其中每束电缆都包含60个中微子传感器。

7.MiniBooNE was conceived to test the results of that earlier Liquid Scintillator Neutrino Detector (LSND) experiment.

而MiniBooNE则是为了验证这个先前的液体闪烁中微子探测器(LSND)实验的结果而进行的。

8.So, in order to ensure that what they hear really is a neutrino, physicists need to know what other noises fill the undersea void.

因此,为了确保听到的的确是中微子,物理学家们还需要知道其他也在海底发出的声响(即所谓的本底干扰@_@)。

9.Research on neutrinos 中微子 could help us understand dark matter better.

neutrinos 中微子的研究可能有助于我们更好地理解暗物质。

10.The neutrino 中微子 has no electric charge, making it extremely difficult to detect.

neutrino 中微子没有电荷,这使得它极其难以探测。

11.The IceCube Neutrino Observatory detects high-energy neutrinos 中微子 from cosmic events.

冰立方中微子观测站探测来自宇宙事件的高能neutrinos 中微子

12.Scientists are using neutrinos 中微子 to study the processes occurring in the sun.

科学家们正在利用neutrinos 中微子研究太阳内部发生的过程。

13.The detection of a single neutrino 中微子 is a significant achievement in particle physics.

探测到一个单独的neutrino 中微子是粒子物理学中的重大成就。

作文

The universe is a vast and mysterious place, filled with particles and forces that govern everything we see and experience. Among these particles, the neutrino (中微子) stands out as one of the most intriguing and elusive. First proposed in the early 20th century, neutrinos (中微子) are subatomic particles that carry no electric charge and have a very small mass. This unique combination of properties makes them incredibly difficult to detect, leading scientists to refer to them as 'ghost particles.' Neutrinos (中微子) are produced in a variety of ways, including during nuclear reactions in the sun, during supernova explosions, and even from cosmic rays interacting with the Earth's atmosphere. In fact, trillions of neutrinos (中微子) pass through our bodies every second without us even noticing, as they interact very weakly with matter. This weak interaction is what makes studying neutrinos (中微子) so challenging, yet also so fascinating. One of the most significant discoveries related to neutrinos (中微子) was the observation of their oscillation. Scientists found that neutrinos (中微子) can change from one type to another as they travel through space. This phenomenon implies that neutrinos (中微子) have mass, contrary to earlier beliefs that they were massless. This discovery has profound implications for our understanding of particle physics and the fundamental nature of the universe. Research on neutrinos (中微子) has led to the development of sophisticated detectors located deep underground or underwater, designed to shield them from other cosmic rays and particles. These detectors use large volumes of water or ice to capture the rare interactions between neutrinos (中微子) and matter. When a neutrino (中微子) interacts with an atom in the detector, it can produce faint flashes of light, which scientists then analyze to learn more about these elusive particles. The study of neutrinos (中微子) is not only important for fundamental physics but also has practical applications. For instance, neutrinos (中微子) can provide insights into nuclear reactors and help us understand processes occurring within stars. Moreover, they may even hold clues about the mysterious dark matter that makes up a significant portion of the universe. In conclusion, the neutrino (中微子) is a remarkable particle that challenges our understanding of the universe. Its elusive nature and the mysteries surrounding it continue to inspire scientists and researchers around the world. As technology advances and our detection methods improve, we may unlock even more secrets held by these ghostly particles, paving the way for new discoveries in both astrophysics and particle physics. The journey to comprehend the role of neutrinos (中微子) in the cosmos is just beginning, and it promises to be an exciting adventure for future generations of scientists.

宇宙是一个广阔而神秘的地方,充满了支配我们所见和经历的一切的粒子和力量。在这些粒子中,中微子neutrino)作为最引人注目且难以捉摸的粒子之一脱颖而出。中微子neutrino)在20世纪初首次被提出,是一种不带电荷且质量极小的亚原子粒子。这种独特的属性组合使它们极难被探测,导致科学家们称其为“幽灵粒子”。 中微子neutrino)通过多种方式产生,包括太阳中的核反应、超新星爆炸,甚至是来自宇宙射线与地球大气相互作用时产生的粒子。事实上,每秒有数万亿个中微子neutrino)穿过我们的身体,而我们甚至没有察觉,因为它们与物质的相互作用非常微弱。这种微弱的相互作用使得研究中微子neutrino)变得极具挑战性,但也因此显得格外迷人。 与中微子neutrino)相关的最重要的发现之一是对其振荡现象的观察。科学家发现,中微子neutrino)在穿越空间时可以从一种类型转变为另一种类型。这一现象暗示着中微子neutrino)具有质量,这与早期认为它们是无质量的观点相悖。这一发现对我们理解粒子物理学及宇宙的基本性质具有深远的影响。 对中微子neutrino)的研究促使科学家们开发了复杂的探测器,这些探测器通常位于地下或水下,旨在将其与其他宇宙射线和粒子隔离。这些探测器使用大量的水或冰来捕捉中微子neutrino)与物质之间的稀有相互作用。当一个中微子neutrino)与探测器中的原子相互作用时,它可能会产生微弱的光闪烁,科学家们随后分析这些光闪烁,以了解更多关于这些难以捉摸的粒子的知识。 对中微子neutrino)的研究不仅对基础物理学重要,还有实际应用。例如,中微子neutrino)可以提供核反应堆的洞察,并帮助我们理解恒星内部发生的过程。此外,它们甚至可能揭示关于构成宇宙重要部分的神秘暗物质的线索。 总之,中微子neutrino)是一种非凡的粒子,挑战着我们对宇宙的理解。它的难以捉摸的特性以及围绕它的谜团继续激励着世界各地的科学家和研究人员。随着技术的进步和探测方法的改善,我们可能会解锁这些幽灵粒子所隐藏的更多秘密,为天体物理学和粒子物理学的新发现铺平道路。理解中微子neutrino)在宇宙中的角色的旅程才刚刚开始,它承诺将成为未来科学家一代又一代的激动人心的冒险。