permutations
简明释义
英[pɜːrˈmjuːteɪʃənz]美[pərˈmjuːteɪʃənz]
n. [数]排列(permutation 的复数)
英英释义
A rearrangement of the elements of an ordered list or set into a one-to-one correspondence with itself. | 将有序列表或集合的元素重新排列成与其自身一一对应的形式。 |
改变某物的排列或顺序的行为。 |
单词用法
n. [数]排列组合 |
同义词
排列 | 座位安排有很多种。 | ||
组合 | 这道菜的味道组合非常出色。 | ||
变体 | 这首歌在不同风格中存在多种变体。 | ||
序列 | 数字序列可以进行数学分析。 | ||
配置 | 网络的配置需要优化。 |
反义词
组合 | The combinations of ingredients can create different flavors. | 成分的组合可以创造出不同的风味。 | |
排列 | There are many arrangements of the same set of books on the shelf. | 同一组书在书架上的排列有很多种。 |
例句
1.However, even with the commonalities, the number of different permutations of architectural environments is vast.
然而,即使使用共性,体系结构环境的不同变化也有多种。
2.Now, add to this all the permutations of getting partial attributes from each entity.
现在,将所有这些添加到从每个实体获取部分属性的排列中。
3.To appreciate the full potential of the auction, one must recognize the many possible permutations this model can assume — especially on the web.
为了充分挖掘拍卖的潜力,人们必须承认存在一系列此类模式假定的交易模式-尤其是网络上。
4.First you tabulate all the permutations and combinations of transactions that can be potentially processed in a test environment.
首先,将所有可以在测试环境中处理的事务排列和组合添加到表格中。
5.The possible permutations of those connections are more than there are particles in the universe.
这些连接的可能排列数比宇宙中的粒子数还要多。
6.Permutations and combinations.
排列与组合。
7.In computer science, we often need to calculate all possible permutations 排列组合 of a set of data.
在计算机科学中,我们经常需要计算一组数据的所有可能的排列组合。
8.The mathematician explained the different permutations 排列组合 of the numbers to his students.
数学家向学生们解释了数字的不同排列组合。
9.There are 24 different permutations 排列组合 of the letters in the word 'cat'.
'cat'这个词的字母有24种不同的排列组合。
10.The software can generate all possible permutations 排列组合 of the user inputs.
该软件可以生成用户输入的所有可能的排列组合。
11.The chef experimented with various permutations 排列组合 of ingredients to create a new dish.
厨师尝试了各种成分的排列组合来创造一道新菜。
作文
In the world of mathematics and computer science, the concept of permutations (排列) plays a crucial role in understanding how different arrangements can be formed from a set of elements. A permutation refers to an arrangement of all the members of a set into a sequence or linear order. For instance, if we have three letters: A, B, and C, the possible permutations (排列) of these letters are ABC, ACB, BAC, BCA, CAB, and CBA. This simple example illustrates how changing the order of elements can lead to distinct outcomes.The significance of permutations (排列) extends beyond mere academic interest; it has practical applications in various fields such as cryptography, data analysis, and even game theory. In cryptography, for instance, the security of encryption algorithms often relies on the complexity of permutations (排列) to obscure the original data. The more complex the permutations (排列) of the encryption keys, the harder it becomes for unauthorized users to decipher the information.Moreover, in computer science, understanding permutations (排列) is essential for algorithm design. Many algorithms, particularly those that involve sorting and searching, depend on the ability to generate and manipulate permutations (排列) efficiently. For example, the traveling salesman problem, which seeks the shortest possible route visiting a set of cities and returning to the origin city, involves calculating numerous permutations (排列) of cities to determine the optimal path.In addition to theoretical applications, permutations (排列) also find their place in everyday decision-making. Consider the process of planning a dinner party. If you have a menu with several dishes, the way you arrange the courses can affect the dining experience. Different permutations (排列) of serving appetizers, main courses, and desserts can create unique atmospheres and flavors. This highlights how permutations (排列) can influence not just mathematical problems but also real-life scenarios.Furthermore, the study of permutations (排列) leads to an understanding of combinations, which are selections made by taking some or all items from a set without regard to the order of arrangement. While permutations (排列) focus on the arrangement of elements, combinations consider only the selection. This distinction is vital in probability and statistics, where knowing whether to use permutations (排列) or combinations can significantly impact the outcome of calculations.In conclusion, the concept of permutations (排列) is not only foundational in mathematics but also permeates various aspects of our lives, from technology to everyday decisions. By exploring the different arrangements that can arise from a set of elements, we gain insights into both theoretical constructs and practical applications. Understanding permutations (排列) equips us with the tools to approach complex problems, enhance our analytical skills, and appreciate the intricacies of arrangement in both abstract and concrete contexts.
在数学和计算机科学的世界中,permutations(排列)的概念在理解如何从一组元素形成不同排列方面发挥着至关重要的作用。permutation指的是将一组成员按顺序或线性排列的方式。例如,如果我们有三个字母:A、B和C,这些字母的可能permutations(排列)是ABC、ACB、BAC、BCA、CAB和CBA。这个简单的例子说明了元素顺序的变化如何导致不同的结果。permutations(排列)的重要性不仅限于学术兴趣;它在密码学、数据分析甚至博弈论等多个领域都有实际应用。例如,在密码学中,密码算法的安全性往往依赖于permutations(排列)的复杂性来模糊原始数据。加密密钥的permutations(排列)越复杂,未经授权的用户解读信息的难度就越大。此外,在计算机科学中,理解permutations(排列)对算法设计至关重要。许多算法,特别是那些涉及排序和搜索的算法,依赖于有效生成和操作permutations(排列)的能力。例如,旅行商问题就是一个寻找最短路线以访问一组城市并返回起点城市的问题,它涉及计算大量城市的permutations(排列)以确定最佳路径。除了理论应用,permutations(排列)在日常决策中也占有一席之地。考虑规划晚宴的过程。如果你有一个包含几道菜的菜单,菜品的排列方式会影响用餐体验。不同的permutations(排列)可以创造独特的氛围和风味。这突显了permutations(排列)如何影响不仅仅是数学问题,还有现实生活场景。此外,研究permutations(排列)有助于理解组合,即从一组中选择一些或所有项目而不考虑排列顺序的选择。虽然permutations(排列)侧重于元素的排列,但组合则仅考虑选择。在概率和统计中,这一区别至关重要,知道是使用permutations(排列)还是组合会显著影响计算结果。总之,permutations(排列)的概念不仅在数学中是基础,而且渗透到我们生活的各个方面,从技术到日常决策。通过探索从一组元素中产生的不同排列,我们获得了对理论构造和实际应用的深入理解。理解permutations(排列)使我们能够应对复杂问题,提高分析能力,并欣赏抽象与具体背景中排列的复杂性。