adiabatic lapse rate of air temperature
简明释义
气温垂直递减率
英英释义
例句
1.The adiabatic lapse rate of air temperature 气温的绝热递减率 can affect the stability of the atmosphere, influencing storm development.
气温的绝热递减率 adiabatic lapse rate of air temperature可能会影响大气的稳定性,从而影响风暴的发展。
2.In aviation, pilots must be aware of the adiabatic lapse rate of air temperature 气温的绝热递减率 to ensure safe climbing and descending procedures.
在航空中,飞行员必须了解气温的绝热递减率 adiabatic lapse rate of air temperature以确保安全的上升和下降程序。
3.Meteorologists calculate the adiabatic lapse rate of air temperature 气温的绝热递减率 to predict weather patterns in mountainous regions.
气象学家计算气温的绝热递减率 adiabatic lapse rate of air temperature以预测山区的天气模式。
4.The adiabatic lapse rate of air temperature 气温的绝热递减率 plays a crucial role in understanding how clouds form as air rises.
理解空气上升时云形成的过程时,气温的绝热递减率 adiabatic lapse rate of air temperature起着至关重要的作用。
5.During the ascent of a balloon, the temperature decreases due to the adiabatic lapse rate of air temperature 气温的绝热递减率, which is approximately 6.5 degrees Celsius per kilometer.
在气球上升过程中,由于气温的绝热递减率 adiabatic lapse rate of air temperature,温度大约每公里降低6.5摄氏度。
作文
The atmosphere is a complex system that plays a critical role in regulating the Earth's climate and weather patterns. One of the fundamental concepts within atmospheric science is the adiabatic lapse rate of air temperature, which refers to the rate at which air temperature decreases with an increase in altitude in the absence of heat exchange with the surrounding environment. Understanding this concept is essential for meteorologists, climatologists, and anyone interested in the dynamics of our atmosphere.When air rises in the atmosphere, it expands due to the decrease in pressure at higher altitudes. As it expands, the air cools. This cooling occurs without any heat being added or removed from the air parcel, hence the term 'adiabatic.' The adiabatic lapse rate of air temperature is typically around 6.5 degrees Celsius per kilometer of ascent in the troposphere, which is the lowest layer of Earth's atmosphere.This phenomenon can be observed in various weather conditions. For example, when warm air rises, it can lead to the formation of clouds and precipitation. The rising air cools as it ascends, and if the temperature drops to the dew point, condensation occurs, resulting in cloud formation. This process is crucial for understanding how storms develop and how rain is produced. Moreover, the adiabatic lapse rate of air temperature has implications for aviation and mountaineering. Pilots must consider the temperature changes that occur with altitude to ensure safe flight operations. Similarly, climbers need to be aware of how quickly temperatures can drop as they ascend mountains, which can affect their safety and preparedness.In addition to its practical applications, the adiabatic lapse rate of air temperature also plays a significant role in climate science. It helps scientists understand how different layers of the atmosphere interact and how energy is transferred through convection. This knowledge is vital for predicting weather patterns and assessing climate change, as alterations in the lapse rate can indicate shifts in atmospheric stability and potential extreme weather events.Furthermore, the adiabatic lapse rate of air temperature is not a fixed value; it can vary depending on the moisture content of the air. In a saturated atmosphere, where the air contains a significant amount of water vapor, the lapse rate is lower, approximately 6 degrees Celsius per kilometer. This variation highlights the importance of humidity in atmospheric processes and reinforces the interconnectedness of temperature, pressure, and moisture in weather systems.In conclusion, the adiabatic lapse rate of air temperature is a fundamental principle in atmospheric science that describes how temperature changes with altitude. Its implications extend beyond theoretical understanding, influencing practical applications in meteorology, aviation, and environmental science. By grasping this concept, we can better appreciate the complexities of our atmosphere and the factors that govern our weather and climate. As we continue to study and monitor these changes, the adiabatic lapse rate of air temperature will remain a key element in our efforts to understand and predict the behavior of our planet's atmosphere.
大气是一个复杂的系统,在调节地球气候和天气模式方面发挥着关键作用。大气科学中的一个基本概念是空气温度的绝热递减率,它指的是在没有与周围环境进行热交换的情况下,随着高度的增加,空气温度降低的速度。理解这一概念对于气象学家、气候学家以及任何对我们大气动态感兴趣的人来说都是至关重要的。当空气在大气中上升时,由于高空压力的降低,它会膨胀。随着它的膨胀,空气会冷却。这种冷却发生在没有任何热量被添加或移除的情况下,因此称为“绝热”。在对流层,即地球大气的最低层,空气温度的绝热递减率通常约为每升高一千米6.5摄氏度。这种现象可以在各种天气条件下观察到。例如,当温暖的空气上升时,会导致云和降水的形成。上升的空气在上升过程中会冷却,如果温度降到露点,就会发生凝结,从而形成云。这一过程对于理解风暴的发展和降雨的产生至关重要。此外,空气温度的绝热递减率对航空和登山也有影响。飞行员必须考虑随着高度变化而发生的温度变化,以确保安全的飞行操作。同样,登山者需要意识到随着他们登高,温度可能会迅速下降,这会影响他们的安全和准备。除了实际应用外,空气温度的绝热递减率在气候科学中也起着重要作用。它帮助科学家理解大气不同层次之间的相互作用,以及能量通过对流转移的方式。这一知识对于预测天气模式和评估气候变化至关重要,因为递减率的变化可能表明大气稳定性和潜在极端天气事件的变化。此外,空气温度的绝热递减率并不是一个固定值;它可能会根据空气的湿度含量而变化。在饱和的大气中,空气中含有大量水蒸气时,递减率较低,大约为每千米6摄氏度。这种变化突显了湿度在大气过程中的重要性,并加强了温度、压力和湿度在天气系统中的相互联系。总之,空气温度的绝热递减率是大气科学中的一个基本原则,描述了随着高度变化温度如何变化。它的影响不仅限于理论理解,还影响气象、航空和环境科学中的实际应用。通过掌握这一概念,我们可以更好地欣赏我们大气的复杂性及其支配天气和气候的因素。随着我们继续研究和监测这些变化,空气温度的绝热递减率将始终是我们理解和预测地球大气行为的关键要素。
相关单词