allosteric

简明释义

[ˌæləʊˈstɪərɪk][ˌæləˈsterɪk]

adj. 变构(象)的

英英释义

Referring to the regulation of a protein's function through the binding of an effector molecule at a site other than the active site, resulting in a conformational change.

指通过效应分子在非活性位点的结合来调节蛋白质功能,从而导致构象变化。

单词用法

allosteric modulation

变构调制

allosteric effect

变构效应

allosteric enzyme

变构酶

allosteric transition

变构转变

allosteric binding

变构结合

allosteric change

变构变化

allosteric mechanism

变构机制

allosteric interactions

变构相互作用

同义词

regulatory

调节性

Allosteric enzymes are often regulatory proteins that control metabolic pathways.

变构酶通常是调节蛋白,控制代谢途径。

modulatory

调节的

Modulatory effects can alter the activity of enzymes in response to different substrates.

调节效应可以根据不同底物改变酶的活性。

non-competitive

非竞争性

Non-competitive inhibitors bind to allosteric sites, affecting enzyme function.

非竞争性抑制剂结合在变构位点,影响酶的功能。

反义词

orthosteric

正位

Orthosteric binding sites are the primary sites where ligands bind to receptors.

正位结合位点是配体与受体结合的主要位点。

direct

直接

Direct modulation of enzyme activity can lead to immediate effects on metabolic pathways.

酶活性的直接调节可以对代谢途径产生即时影响。

例句

1.Proteins which have two separate but interacting sites are called allosteric proteins.

这种具有两个不同而又相互作用位置的蛋白质叫做变构蛋白质。

2.A fundamental goal in signal transduction study is to understand allosteric communication.

对变构通讯的理解是研究细胞信号转导的一个基本目标。

3.When the product accumulates beyond an optimal amount it binds to a site (ALLOSTERIC site) on the enzyme, changing the shape so that it can no longer react with its substrate.

当产物积累超出最佳数量时,它将与酶的一个氨酰基位点(变构位点)结合改变其形状,使其不能长时间与底物发生作用。

4.The results indicated that the CMC method could be a new way for quantitative analysis of allosteric effects for 5-hydroxytryptamine receptor.

该方法为定量研究受体的别构效应提供了一种全新思路。

5.When the product accumulates beyond an optimal amount it binds to a site (ALLOSTERIC site) on the enzyme, changing the shape so that it can no longer react with its substrate.

当产物积累超出最佳数量时,它将与酶的一个氨酰基位点(变构位点)结合改变其形状,使其不能长时间与底物发生作用。

6.Cyclin D1 which functions as a mitogenic sensor and allosteric activator of CDK4/6, is one of the more frequently altered cell cycle regulators in cancers.

细胞周期蛋白D1作为一个能促进有丝分裂和CDK4的变构激活剂,是癌症中较频繁变化的细胞周期调节子。

7.Scientists are exploring allosteric 变构的 sites as potential targets for cancer treatment.

科学家们正在探索allosteric 变构的位点作为癌症治疗的潜在靶点。

8.The binding of an allosteric 变构的 molecule can enhance or inhibit enzyme activity.

一个allosteric 变构的分子的结合可以增强或抑制酶活性。

9.Research shows that allosteric 变构的 inhibitors can provide a new approach to drug design.

研究表明,allosteric 变构的抑制剂可以为药物设计提供一种新方法。

10.The enzyme's activity can be modulated by an allosteric 变构的 regulator that binds to a site other than the active site.

该酶的活性可以通过一个结合在活性位点以外的位点的allosteric 变构的调节因子来调节。

11.In metabolic pathways, allosteric 变构的 enzymes play a crucial role in regulating flux.

在代谢途径中,allosteric 变构的酶在调节流量方面起着至关重要的作用。

作文

In the realm of biochemistry, the concept of allosteric regulation is pivotal for understanding how enzymes function and how metabolic pathways are controlled. The term allosteric refers to the alteration of an enzyme's activity through the binding of a molecule at a site other than the active site. This phenomenon is essential because it allows for the fine-tuning of metabolic processes in response to varying cellular conditions. In essence, allosteric regulation provides a mechanism by which cells can respond dynamically to changes in their environment. To elaborate further, enzymes are biological catalysts that speed up chemical reactions in living organisms. They typically have an active site where substrates bind to facilitate these reactions. However, the presence of other molecules can influence enzyme activity in ways that are not directly related to substrate concentration. This is where allosteric regulation comes into play. Allosteric sites are distinct from the active sites and can be occupied by effector molecules, which can either enhance (activators) or inhibit (inhibitors) enzyme activity.One classic example of allosteric regulation is seen in the enzyme phosphofructokinase (PFK), which plays a crucial role in glycolysis. PFK is inhibited by high levels of ATP, signaling that the cell has sufficient energy. Conversely, when ATP levels drop and ADP levels rise, PFK is activated, promoting glycolysis to generate more ATP. This allosteric behavior ensures that the cell conserves energy and only produces it when necessary. The implications of allosteric regulation extend beyond individual enzymes. It plays a significant role in metabolic pathways, where multiple enzymes work in concert to regulate the flow of metabolites. For instance, feedback inhibition is a common allosteric mechanism where the end product of a metabolic pathway inhibits an upstream enzyme, preventing overproduction of that product. This is vital for maintaining homeostasis within the cell and ensuring that resources are utilized efficiently.Moreover, the study of allosteric mechanisms has important applications in drug design and therapeutic interventions. Many drugs are designed to target allosteric sites rather than active sites, providing a more nuanced approach to modulation of enzyme activity. By doing so, researchers can create drugs that have fewer side effects and greater specificity. In summary, the concept of allosteric regulation is fundamental to our understanding of biochemistry and cellular metabolism. It illustrates how enzymes are not merely passive catalysts but active participants in regulatory networks that maintain cellular homeostasis. The ability to modulate enzyme activity through allosteric sites is a sophisticated adaptation that allows organisms to thrive in a constantly changing environment. As we continue to explore the intricacies of biochemical pathways, the significance of allosteric regulation will undoubtedly remain a focal point in both research and application.

在生物化学领域,allosteric调节的概念对于理解酶的功能和代谢途径的控制至关重要。allosteric这个术语指的是通过在活性位点以外的部位结合分子来改变酶的活性。这一现象是必不可少的,因为它允许细胞根据不同的细胞条件对代谢过程进行微调。实际上,allosteric调节为细胞提供了一种机制,使其能够动态响应环境的变化。进一步阐述,酶是生物催化剂,能够加速生物体内的化学反应。它们通常具有一个活性位点,在这里底物结合以促进这些反应。然而,其他分子的存在可以以与底物浓度无关的方式影响酶的活性。这就是allosteric调节发挥作用的地方。全异构位点与活性位点不同,可以被效应分子占据,这些分子可以增强(激活剂)或抑制(抑制剂)酶的活性。allosteric调节的一个经典例子是在糖酵解中起关键作用的酶磷酸果糖激酶(PFK)。当ATP水平较高时,PFK被抑制,表明细胞有足够的能量。相反,当ATP水平下降而ADP水平上升时,PFK被激活,促进糖酵解以产生更多的ATP。这种allosteric行为确保细胞节省能量,并仅在必要时产生能量。allosteric调节的影响超出了单个酶的范围。它在代谢途径中发挥着重要作用,其中多个酶协同工作以调节代谢物的流动。例如,反馈抑制是一种常见的allosteric机制,其中代谢途径的最终产物抑制上游酶,防止该产物的过量生产。这对于维持细胞内的稳态和确保资源的有效利用至关重要。此外,对allosteric机制的研究在药物设计和治疗干预中具有重要应用。许多药物旨在靶向全异构位点而非活性位点,从而提供更细致的酶活性调节方法。通过这样做,研究人员可以创造出副作用更少且特异性更强的药物。总之,allosteric调节的概念是我们理解生物化学和细胞代谢的基础。它说明了酶不仅仅是被动催化剂,而是参与维持细胞稳态的调节网络中的积极参与者。通过allosteric位点调节酶活性的能力是一种复杂的适应,使生物体能够在不断变化的环境中生存。随着我们继续探索生化途径的复杂性,allosteric调节的重要性无疑将始终是研究和应用的重点。