actual breaking load
简明释义
实际破断载荷
英英释义
例句
1.It is crucial to test the actual breaking load of materials used in construction projects.
测试建筑项目中使用材料的实际断裂负荷至关重要。
2.Before using the lifting equipment, we need to verify the actual breaking load specified by the manufacturer.
在使用提升设备之前,我们需要验证制造商指定的实际断裂负荷。
3.The safety report indicated that the actual breaking load was lower than previously estimated.
安全报告指出,实际断裂负荷低于之前的估计。
4.The actual breaking load of this rope is significantly higher than the maximum load we plan to apply.
这根绳子的实际断裂负荷远高于我们计划施加的最大负荷。
5.The engineer calculated the actual breaking load of the steel cable to ensure it meets safety standards.
工程师计算了钢缆的实际断裂负荷,以确保其符合安全标准。
作文
The concept of actual breaking load is critical in the fields of engineering and material science. It refers to the maximum load that a material can withstand before failure occurs. Understanding this concept is essential for engineers who design structures, as it directly impacts safety and functionality. In essence, the actual breaking load is the point at which a material transitions from elastic deformation to plastic deformation, ultimately leading to rupture. When designing a bridge, for example, engineers must calculate the actual breaking load of the materials used, such as steel or concrete. They conduct various tests to determine how much weight these materials can bear without failing. This information is crucial because if the load exceeds the actual breaking load, the structure could collapse, resulting in catastrophic consequences. Moreover, the actual breaking load can vary significantly depending on several factors, including the type of material, environmental conditions, and the presence of defects or flaws within the material. For instance, a steel beam may have a high actual breaking load when new, but corrosion or fatigue over time can weaken it, reducing its load-bearing capacity. Therefore, regular inspection and maintenance are vital to ensure that structures remain safe and functional over their intended lifespan. In addition to structural applications, the actual breaking load is also relevant in manufacturing processes. Manufacturers must ensure that products can withstand the forces they will encounter during use. For example, in the production of ropes or cables, understanding the actual breaking load allows manufacturers to set safe working loads and avoid accidents. If a rope has an actual breaking load of 1000 pounds, it would be prudent to recommend a safe working load of 500 pounds to provide a margin of safety. Testing for actual breaking load typically involves applying a controlled load to a sample until it fails. This process is known as tensile testing. During the test, engineers record the load at which the material breaks, allowing them to determine its actual breaking load. This data is invaluable for quality control and ensuring that products meet safety standards. Furthermore, advances in technology have led to improved methods for measuring the actual breaking load. Modern materials testing machines can provide real-time data and visualizations, making it easier for engineers to analyze the results and make informed decisions. These innovations enhance our understanding of materials and contribute to safer designs across various industries. In conclusion, the actual breaking load is a fundamental concept that plays a crucial role in engineering, manufacturing, and safety. By understanding and accurately determining the actual breaking load of materials, we can design structures and products that are not only functional but also safe for public use. As technology continues to evolve, so too will our methods of testing and understanding the limits of materials, ensuring that we build a safer future for all.
“实际破裂载荷”这一概念在工程和材料科学领域至关重要。它指的是材料在发生失效之前所能承受的最大负载。理解这个概念对设计结构的工程师来说至关重要,因为它直接影响安全性和功能性。本质上,“实际破裂载荷”是材料从弹性变形转变为塑性变形,最终导致断裂的点。例如,在设计桥梁时,工程师必须计算所使用材料(如钢或混凝土)的“实际破裂载荷”。他们进行各种测试以确定这些材料在不发生故障的情况下能够承受多少重量。这些信息至关重要,因为如果负载超过“实际破裂载荷”,结构可能会崩溃,从而导致灾难性的后果。此外,“实际破裂载荷”可能会因多种因素而显著变化,包括材料类型、环境条件以及材料内部缺陷或瑕疵的存在。例如,一根新的钢梁可能具有较高的“实际破裂载荷”,但随着时间的推移,腐蚀或疲劳可能会削弱它,降低其承载能力。因此,定期检查和维护对于确保结构在预期寿命内保持安全和功能至关重要。除了结构应用外,“实际破裂载荷”在制造过程中也很相关。制造商必须确保产品能够承受使用过程中遇到的力量。例如,在生产绳索或电缆时,了解“实际破裂载荷”使制造商能够设定安全工作负载,避免事故。如果一根绳索的“实际破裂载荷”为1000磅,那么建议设定安全工作负载为500磅,以提供安全裕度。“实际破裂载荷”的测试通常涉及对样本施加受控负载,直到其失败。这个过程称为拉伸测试。在测试过程中,工程师记录材料断裂时的负载,从而确定其“实际破裂载荷”。这些数据对质量控制和确保产品符合安全标准至关重要。此外,技术的进步导致了测量“实际破裂载荷”的改进方法。现代材料测试机可以提供实时数据和可视化,使工程师更容易分析结果并做出明智的决策。这些创新增强了我们对材料的理解,并有助于各行业的更安全设计。总之,“实际破裂载荷”是一个基本概念,在工程、制造和安全中发挥着至关重要的作用。通过理解和准确确定材料的“实际破裂载荷”,我们可以设计出不仅功能齐全而且对公众使用安全的结构和产品。随着技术的不断发展,我们对材料极限的测试和理解方法也将不断演进,确保我们为所有人建设一个更安全的未来。
相关单词