denary

简明释义

[ˈdiːnəri][ˈdenəri;ˈdiːnəri]

adj. 十的;[数] 十进制的

英英释义

Relating to or based on the number ten; decimal.

与数字十有关或基于十的;十进制的。

单词用法

denary numeral system

十进制数字系统

denary representation

十进制表示

convert to denary

转换为十进制

denary base

十进制基数

同义词

decimal

十进制的

The denary system is widely used in everyday mathematics.

十进制系统在日常数学中被广泛使用。

反义词

binary

二进制

The binary system is fundamental to computer science.

二进制系统是计算机科学的基础。

nonary

九进制

In some cultures, the nonary numeral system is used for specific counting purposes.

在某些文化中,九进制数系统用于特定的计数目的。

例句

1.The text does obstacle detection for the picked image. The process contains pretreatment, denary, lane detection and mathematical morphology in road image.

对采集的道路图像中的障碍物进行边缘检测,其过程为:道路图像预处理、二值化、边缘检测和数学形态学处理。

2.The text does obstacle detection for the picked image. The process contains pretreatment, denary, lane detection and mathematical morphology in road image.

对采集的道路图像中的障碍物进行边缘检测,其过程为:道路图像预处理、二值化、边缘检测和数学形态学处理。

3.We now try to write a denary number, say 9310, in base 8.

现在我们用8为基值,来记一个十进制的数,如9310。

4.When converting binary to denary 十进制, each digit's position represents a power of two.

将二进制转换为十进制时,每个数字的位置代表2的幂。

5.In mathematics, the term denary 十进制 refers specifically to the base-10 system.

在数学中,术语十进制特指基数为10的系统。

6.To perform arithmetic operations, we often convert numbers into denary 十进制 form.

为了进行算术运算,我们通常将数字转换为十进制形式。

7.The denary 十进制 system is the most commonly used numeral system in everyday life.

在日常生活中,十进制系统是最常用的数字系统。

8.In the denary 十进制 system, the number 10 is represented as '10'.

十进制系统中,数字10表示为'10'。

作文

The concept of numbers is fundamental to our understanding of mathematics and the world around us. Among the various numeral systems, the most commonly used is the base-10 system, also known as the denary system. This system uses ten distinct digits, ranging from 0 to 9, to represent all possible numbers. The denary system is not only prevalent in everyday life but also serves as the foundation for more complex mathematical operations. In our daily activities, we rely heavily on the denary system. From counting change at a store to telling time, the base-10 system simplifies our interactions with numbers. For instance, when we purchase an item that costs $5.99, we instinctively understand that this price is composed of five whole dollars and ninety-nine cents, thanks to the denary structure. This clarity and ease of use make the denary system the preferred choice for most applications.However, it is interesting to note that other numeral systems exist alongside the denary system. For example, the binary system, which uses only two digits (0 and 1), is essential in computer science and digital technology. Similarly, the hexadecimal system, which employs sixteen symbols, is often used in programming and web design. These alternative systems highlight the versatility of numerical representation, yet the denary system remains dominant due to its simplicity and familiarity.The importance of the denary system extends beyond practical applications; it also plays a crucial role in education. When children learn to count, they typically begin with the denary system, as it aligns with their natural cognitive development. Educators emphasize the significance of understanding place value, which is a core principle of the denary system. For example, in the number 345, the digit 3 represents three hundreds, the digit 4 represents four tens, and the digit 5 represents five units. This hierarchical structure enables students to grasp larger concepts in mathematics, such as addition, subtraction, multiplication, and division.Moreover, the denary system's influence can be seen in various fields, including finance, engineering, and science. In finance, calculations involving interest rates, investments, and budgets are often conducted using denary numbers. Engineers rely on the denary system when designing structures and machines, ensuring precision and accuracy in their work. In the scientific community, measurements and data analysis are frequently represented in denary format, facilitating clear communication and understanding among researchers.In conclusion, the denary system is an integral part of our lives, shaping how we perceive and interact with numbers. Its widespread use in daily activities, education, and various professional fields underscores its significance. As we continue to advance technologically and mathematically, the denary system will undoubtedly remain a cornerstone of numerical representation, proving its enduring relevance in an ever-evolving world.

数字的概念对我们理解数学和周围世界至关重要。在各种数字系统中,最常用的是十进制系统,也称为denary系统。该系统使用十个不同的数字,从0到9,来表示所有可能的数字。denary系统不仅在日常生活中普遍存在,而且还为更复杂的数学运算奠定了基础。在我们的日常活动中,我们在很大程度上依赖于denary系统。从在商店里数零钱到看时间,十进制系统简化了我们与数字的互动。例如,当我们购买一件价格为$5.99的商品时,我们本能地理解这个价格由五美元和九十九美分组成,这要归功于denary结构。这种清晰和易用性使得denary系统成为大多数应用的首选。然而,值得注意的是,除了denary系统之外,还存在其他数字系统。例如,二进制系统仅使用两个数字(0和1),在计算机科学和数字技术中至关重要。同样,十六进制系统使用十六个符号,通常用于编程和网页设计。这些替代系统突显了数字表示的多样性,但由于其简单性和熟悉性,denary系统仍然占主导地位。denary系统的重要性不仅限于实际应用;它在教育中也发挥着关键作用。当孩子们学习计数时,他们通常从denary系统开始,因为它与他们的自然认知发展相一致。教育工作者强调理解位值的重要性,这是denary系统的核心原则。例如,在数字345中,数字3代表三百,数字4代表四十,数字5代表五个单位。这种层次结构使学生能够掌握数学中的更大概念,如加法、减法、乘法和除法。此外,denary系统的影响可以在多个领域看到,包括金融、工程和科学。在金融中,涉及利率、投资和预算的计算通常使用denary数字进行。工程师在设计结构和机器时依赖于denary系统,确保他们工作的精确性和准确性。在科学界,测量和数据分析通常以denary格式表示,促进研究人员之间的清晰沟通和理解。总之,denary系统是我们生活中不可或缺的一部分,塑造了我们如何看待和与数字互动。它在日常活动、教育和各专业领域的广泛使用凸显了其重要性。随着我们在技术和数学上的不断进步,denary系统无疑将继续作为数字表示的基石,证明其在不断发展的世界中的持久相关性。