acceptor atom
简明释义
原子接受体
英英释义
例句
1.In semiconductor physics, the presence of a(n) acceptor atom 受体原子 can significantly alter the electrical properties of the material.
在半导体物理中,受体原子的存在可以显著改变材料的电气特性。
2.When doping silicon with boron, boron acts as an acceptor atom 受体原子, creating holes for electron movement.
当用硼掺杂硅时,硼作为一个受体原子,为电子运动创造了空穴。
3.In the context of organic photovoltaics, the role of the acceptor atom 受体原子 is crucial for charge separation.
在有机光伏的背景下,受体原子的作用对于电荷分离至关重要。
4.The interaction between donor and acceptor atoms 受体原子 is fundamental to understanding molecular electronics.
供体和受体原子之间的相互作用是理解分子电子学的基础。
5.The efficiency of p-type semiconductors relies heavily on the concentration of acceptor atoms 受体原子 in the crystal lattice.
p型半导体的效率在很大程度上依赖于晶格中受体原子的浓度。
作文
In the realm of chemistry and material science, the concept of an acceptor atom plays a crucial role in understanding various processes. An acceptor atom is defined as an atom that can accept electrons from another atom during a chemical reaction or within a solid-state structure. This electron-accepting ability is fundamental in the formation of bonds and the electrical properties of materials. For example, in semiconductors, acceptor atoms are often introduced to create p-type materials, which have an abundance of holes or positive charge carriers. To illustrate the significance of acceptor atoms, let’s consider the process of doping in semiconductors. When silicon, a common semiconductor material, is doped with elements such as boron, these boron atoms act as acceptor atoms. They have one less valence electron compared to silicon, which leads to the creation of 'holes' in the electronic structure. These holes can move through the lattice, allowing for electrical conduction. Thus, the presence of acceptor atoms not only modifies the electrical properties of the material but also enhances its functionality in electronic devices.Furthermore, the interaction between donor and acceptor atoms is essential in determining the overall behavior of semiconductor materials. Donor atoms, which provide extra electrons, create n-type materials, while acceptor atoms create p-type materials. The balance between these two types of doping allows for the formation of p-n junctions, which are critical components in diodes and transistors. The understanding of how acceptor atoms influence the conductivity and electronic properties of materials is vital for the development of modern electronics, including solar cells, LEDs, and integrated circuits.Moreover, acceptor atoms are not limited to just semiconductors; they are also significant in biological systems. In biochemistry, certain metals can act as acceptor atoms in enzymatic reactions, facilitating the transfer of electrons in metabolic processes. For instance, iron in hemoglobin functions as an acceptor atom for oxygen, playing a critical role in respiration. This highlights the versatility and importance of acceptor atoms across different scientific disciplines.In conclusion, the term acceptor atom encompasses a wide range of applications and implications in both chemistry and biology. Understanding the role of acceptor atoms helps us comprehend fundamental processes in material science, electronics, and biochemistry. As technology advances, further exploration of acceptor atoms will undoubtedly lead to innovative solutions and enhancements in various fields, emphasizing their essential role in both nature and technology.
在化学和材料科学领域,受体原子的概念在理解各种过程方面发挥着至关重要的作用。受体原子被定义为在化学反应或固态结构中能够接受来自另一个原子的电子的原子。这种电子接受能力是形成键和材料电性质的基础。例如,在半导体中,受体原子通常被引入以创建p型材料,这些材料具有大量的空穴或正电荷载体。为了说明受体原子的重要性,让我们考虑半导体中的掺杂过程。当硅这种常见的半导体材料被掺入锗等元素时,这些锗原子就充当了受体原子。它们的价电子比硅少一个,从而导致电子结构中形成“空穴”。这些空穴可以在晶格中移动,从而允许电导。因此,受体原子的存在不仅改变了材料的电性质,还增强了其在电子设备中的功能。此外,供体和受体原子之间的相互作用对于确定半导体材料的整体行为至关重要。供体原子提供额外的电子,形成n型材料,而受体原子则形成p型材料。这两种掺杂类型之间的平衡允许形成p-n结,这是二极管和晶体管的关键组件。理解受体原子如何影响材料的导电性和电子特性对于现代电子设备的发展至关重要,包括太阳能电池、LED和集成电路。此外,受体原子不仅限于半导体;它们在生物系统中也具有重要意义。在生物化学中,某些金属可以作为酶反应中的受体原子,促进代谢过程中的电子转移。例如,血红蛋白中的铁作为受体原子与氧结合,在呼吸中发挥关键作用。这突显了受体原子在不同科学学科中的多样性和重要性。总之,受体原子这一术语涵盖了在化学和生物学中广泛的应用和含义。理解受体原子的作用有助于我们理解材料科学、电子学和生物化学中的基本过程。随着技术的进步,对受体原子的进一步探索无疑将导致各个领域的创新解决方案和增强,强调了它们在自然和技术中不可或缺的角色。
相关单词