ultrastructural
简明释义
英[ˌʌltrəˈstrʌkʧərəl]美[ˌʌltrəˈstrʌkʧərəl]
adj. 超微的;超微结构的
英英释义
单词用法
超微结构层面 | |
超微结构成像 | |
超微结构组织 | |
超微结构完整性 | |
超微结构观察 | |
超微结构分析技术 | |
超微结构特征 | |
超微结构形态 | |
超微结构数据 | |
超微结构分辨率 |
同义词
反义词
宏观的 | The macroscopic view of the organism reveals its overall structure. | 生物的宏观视角揭示了其整体结构。 | |
粗略的 | In gross anatomy, we study the larger structures of the body. | 在大体解剖学中,我们研究身体的较大结构。 |
例句
1.Methods The ultrastructural feature of the rhomboid fossa in human fetus were examined by scanning electron microscopy.
方法用扫描电镜的方法观察了人胎儿菱形窝室管膜的超微结构。
2.Objective To study the MRI features and its ultrastructural pathology basis in different myocardial injury areas after acute infarction.
目的探讨急性心肌梗塞后不同心肌损伤区的MRI特征及其超微病理学基础。
3.ObjectiveTo observe the ultrastructural alterations of the photoreceptor in inherited retinal degeneration in rats.
目的观察遗传性视网膜变性大鼠视细胞超微结构改变。
4.No significant ultrastructural changes were observed in Leydig cells.
间质细胞的超微结构未见明显变化。
5.Objective To observe the ultrastructural changes of various cell components in a nerve regeneration chamber during its regenerating process.
目的研究神经再生室中周围神经修复过程各组成成份的变化过程。
6.The ultrastructural features showed some relationship between increased secretory activity and the extent of peritumoral edema.
超显微结构分析显示肿瘤内,分泌作用的增加可能与脑瘤周围水肿的发生有关。
7.The study focused on the ultrastructural 超微结构 characteristics of the cell membranes.
这项研究集中于细胞膜的超微结构特征。
8.The ultrastructural 超微结构 examination revealed unexpected features in the virus particles.
对病毒颗粒的超微结构检查揭示了意想不到的特征。
9.The ultrastructural 超微结构 analysis provided insights into the cellular mechanisms at play.
对细胞机制的超微结构分析提供了深入的见解。
10.In this experiment, we will investigate the ultrastructural 超微结构 changes in response to treatment.
在这个实验中,我们将研究治疗反应中的超微结构变化。
11.Using electron microscopy, researchers analyzed the ultrastructural 超微结构 details of the tissue.
研究人员使用电子显微镜分析了组织的超微结构细节。
作文
In the field of biology, understanding the intricate details of cellular structures is crucial for comprehending how life functions at a microscopic level. One term that often arises in discussions about cellular anatomy is ultrastructural, which refers to the detailed organization of cellular components that can only be observed using advanced microscopy techniques. The ultrastructural analysis of cells allows scientists to investigate the relationships between different organelles and their functions within the cell. For instance, by examining the ultrastructural features of mitochondria, researchers can gain insights into energy production and metabolism. Mitochondria are often dubbed the 'powerhouses' of the cell, and their ultrastructural characteristics, such as the inner membrane folds known as cristae, play a vital role in ATP synthesis.Furthermore, the ultrastructural examination of cellular components extends beyond mitochondria. The endoplasmic reticulum (ER), for example, has distinct ultrastructural features that differentiate its rough and smooth types. The rough ER is studded with ribosomes, giving it a 'rough' appearance, and is primarily involved in protein synthesis. In contrast, the smooth ER lacks ribosomes and is associated with lipid synthesis and detoxification processes. Understanding these ultrastructural differences is essential for grasping how cells maintain their functions and respond to various stimuli.Moreover, the ultrastructural study of cells is not limited to healthy tissues. Pathological conditions often result in notable changes in cellular architecture. For example, cancer cells frequently exhibit altered ultrastructural characteristics, such as irregular shapes, disrupted organelle arrangement, and increased numbers of certain organelles. By analyzing these ultrastructural changes, pathologists can identify cancerous tissues and determine the stage of disease progression. This highlights the importance of ultrastructural studies in both basic research and clinical diagnostics.The advent of electron microscopy has revolutionized our ability to conduct ultrastructural analyses. Unlike traditional light microscopy, which is limited by the wavelength of visible light, electron microscopy utilizes beams of electrons to achieve much higher resolution. This enables scientists to visualize ultrastructural details that were previously inaccessible. As a result, researchers can create comprehensive maps of cellular structures, revealing the complex interplay between different organelles and their roles in maintaining cellular homeostasis.In conclusion, the term ultrastructural encompasses a vast realm of knowledge regarding the detailed architecture of cells. By employing advanced imaging techniques, scientists can explore the ultrastructural features of various organelles, gaining valuable insights into their functions and interactions. This understanding is critical for advancing our knowledge of biology, pathology, and the mechanisms underlying various diseases. As technology continues to evolve, the potential for new discoveries in ultrastructural biology remains boundless, paving the way for future innovations in science and medicine.
在生物学领域,理解细胞结构的复杂细节对理解生命如何在微观层面上运作至关重要。在关于细胞解剖的讨论中,一个常常出现的术语是超微结构,它指的是只能通过先进显微镜技术观察到的细胞成分的详细组织。对细胞进行超微结构分析使科学家能够研究不同细胞器之间的关系及其在细胞内的功能。例如,通过检查线粒体的超微结构特征,研究人员可以深入了解能量生产和新陈代谢。线粒体常被称为细胞的“动力源”,其超微结构特征,如内膜褶皱(称为嵴),在ATP合成中发挥着至关重要的作用。此外,细胞成分的超微结构检查不仅限于健康组织。病理状态通常会导致细胞结构发生显著变化。例如,癌细胞常常表现出不规则的形状、细胞器排列的破坏以及某些细胞器数量的增加等超微结构特征的改变。通过分析这些超微结构变化,病理学家可以识别癌性组织并确定疾病进展的阶段。这突显了在基础研究和临床诊断中进行超微结构研究的重要性。电子显微镜的出现彻底改变了我们进行超微结构分析的能力。与传统光学显微镜受可见光波长限制不同,电子显微镜利用电子束来达到更高的分辨率。这使得科学家能够可视化以前无法接触的超微结构细节。因此,研究人员可以创建细胞结构的综合图谱,揭示不同细胞器之间复杂的相互作用及其在维持细胞稳态中的作用。总之,术语超微结构涵盖了有关细胞详细架构的广泛知识。通过采用先进的成像技术,科学家可以探索各种细胞器的超微结构特征,从而深入了解它们的功能和相互作用。这种理解对推进我们对生物学、病理学和各种疾病机制的认识至关重要。随着技术的不断发展,在超微结构生物学领域的新发现潜力依然无穷,为未来科学和医学的创新铺平了道路。