polarons

简明释义

[ˈpɒləˌrɒn][ˈpoʊləˌrɑn]

n. [物][遗]极化子(polaron 的复数)

英英释义

Polarons are quasiparticles that arise from the interaction of electrons with lattice distortions in a solid material, which can affect the electronic properties of the material.

极化子是由电子与固体材料中的晶格畸变相互作用而产生的准粒子,这种相互作用可以影响材料的电子特性。

单词用法

small polarons

小极化子

large polarons

大极化子

polarons in semiconductors

半导体中的极化子

formation of polarons

极化子的形成

properties of polarons

极化子的性质

polarons and phonons

极化子与声子

同义词

quasiparticle

准粒子

Quasiparticles like polarons play a crucial role in condensed matter physics.

像极化子这样的准粒子在凝聚态物理中起着至关重要的作用。

excitons

激子

Excitons are similar to polarons but involve electron-hole pairs.

激子与极化子相似,但涉及电子-空穴对。

electron-phonon coupling

电子-声子耦合

Understanding electron-phonon coupling is essential for studying polarons.

理解电子-声子耦合对于研究极化子至关重要。

反义词

excitons

激子

Excitons are bound states of electrons and holes that play a crucial role in semiconductor physics.

激子是电子和空穴的结合态,在半导体物理中起着至关重要的作用。

free carriers

自由载流子

Free carriers contribute to electrical conductivity in materials.

自由载流子对材料的电导率有贡献。

例句

1.Furthermore, the properties of polarons in polar crystals are investigated by taking account of the influence of pressure effect and the electrons emitting or absorbing many virtual phonons.

考虑电子发射和吸收多个虚声子的影响,讨论了压力作用下极性晶体中极化子基态的性质。

2.The experimental evidences show that both actions of double exchange interaction and small polarons are responsible for the variation of the CMR effect.

实验结果表明,是双交换作用和小极化子效应的共同作用决定了CMR效应的特性。

3.Furthermore, the properties of polarons in polar crystals are investigated by taking account of the influence of pressure effect and the electrons emitting or absorbing many virtual phonons.

考虑电子发射和吸收多个虚声子的影响,讨论了压力作用下极性晶体中极化子基态的性质。

4.The detailed 10 phonon modes should be considered in the future work especially when ones study the pressure effects of cyclotron resonance of polarons.

在以后的工作中,特别是讨论极化子回旋共振的压力效应时,应该采用精细的界面声子模。

5.Self-trapped states, such as spin polarons as well as spinless bipolarons are assumed to be the main carriers in organic semiconductors.

假设自旋极化子和不带自旋的双极化子为有机半导体中的载流子。

6.The Feynman path-integral variational theory is the best way to compute the ground-state energy of bound polarons.

费曼路径积分的变分方法是计算束缚极化子基态能的最有效方法。

7.We attribute the improvement to the prolonged lifetime of small polarons and the increased absorption at the gating wavelength due to thermal reduction.

我们认为这主要是由于热还原处理之后晶体中小极化子寿命变长,同时晶体在敏化光波段的吸收增强所致。

8.The yield of charged polarons is about 25%, which is independent of the excitation energies and in good agreement with results from experiments.

荷电极化子的量子产率约为25%,并且与激发能量无关,与实验观测的结果一致。

9.Understanding polarons 极化子 is crucial for developing better semiconductor devices.

理解polarons 极化子对于开发更好的半导体设备至关重要。

10.The theory of polarons 极化子 helps explain certain anomalies in the conductivity of ionic crystals.

关于polarons 极化子的理论有助于解释离子晶体导电性中的某些异常现象。

11.Recent studies have shown that polarons 极化子 can significantly affect the electrical properties of materials.

最近的研究表明,polarons 极化子可以显著影响材料的电学性质。

12.In solid-state physics, the interaction of electrons with lattice vibrations can lead to the formation of polarons 极化子.

在固态物理中,电子与晶格振动的相互作用可以导致polarons 极化子的形成。

13.The behavior of polarons 极化子 in high-temperature superconductors is a topic of intense research.

在高温超导体中,polarons 极化子的行为是一个热门研究课题。

作文

In the realm of condensed matter physics, the concept of polarons plays a crucial role in understanding the behavior of charge carriers in various materials. A polaron is essentially a quasiparticle that arises when an electron or hole interacts with the lattice of a solid material, leading to a distortion of the lattice structure around it. This interaction can significantly influence the electrical, thermal, and optical properties of the material. As we delve deeper into the world of polarons, it becomes evident that they are not just theoretical constructs but have practical implications in numerous technological applications.The formation of polarons can be observed in many materials, especially in semiconductors and insulators. When an electron moves through a lattice, it causes local deformations due to the attractive forces between the electron and the positively charged ions in the lattice. This deformation creates a region of localized distortion, which moves along with the electron, effectively making the electron heavier and altering its mobility. This phenomenon is what we refer to as a polaron. The energy associated with this distortion can lead to various effects, such as changes in conductivity and the formation of energy bands in the material.Understanding polarons is particularly important in the context of high-temperature superconductors. In these materials, the interactions between electrons and phonons (quantized lattice vibrations) can lead to the formation of polarons, which play a vital role in the mechanism of superconductivity. The ability of polarons to condense into a coherent state at low temperatures is one of the factors that contribute to the unique properties of superconductors. Researchers continue to explore how manipulating the properties of polarons can lead to advancements in superconductor technology, potentially paving the way for more efficient power transmission and magnetic levitation systems.Moreover, polarons are also significant in organic electronics, where organic semiconductors are used in devices like organic light-emitting diodes (OLEDs) and organic solar cells. The presence of polarons in these materials can affect charge transport mechanisms and overall device efficiency. Understanding the dynamics of polarons in organic materials allows scientists and engineers to design better-performing devices by optimizing the material properties and enhancing charge mobility.In conclusion, the study of polarons is a fascinating area of research that bridges theoretical physics and practical applications. From influencing the conductivity of materials to playing a key role in the mechanisms of superconductivity and organic electronics, polarons are essential for advancing our understanding of condensed matter physics. As technology continues to evolve, further exploration of polarons could unlock new possibilities in material science and engineering, leading to innovations that could transform various industries.

在凝聚态物理的领域中,极化子的概念在理解各种材料中电荷载流子的行为方面发挥着至关重要的作用。极化子本质上是一个准粒子,当电子或空穴与固体材料的晶格相互作用时,会导致其周围晶格结构的畸变,从而产生这种现象。这种相互作用可以显著影响材料的电学、热学和光学性质。当我们深入探讨极化子的世界时,很明显它们不仅仅是理论构造,而是在众多技术应用中具有实际意义。极化子的形成可以在许多材料中观察到,特别是在半导体和绝缘体中。当电子在晶格中移动时,由于电子与晶格中带正电离子之间的吸引力,它会导致局部变形。这种变形在电子周围创建了一个局部的畸变区域,该区域随着电子的移动而移动,实际上使电子变得更重并改变其迁移率。这个现象就是我们所称的极化子。与这种畸变相关的能量可以导致各种效应,例如导电性变化和材料中能带的形成。理解极化子在高温超导体的背景下尤其重要。在这些材料中,电子与声子(量子化的晶格振动)之间的相互作用可以导致极化子的形成,这在超导机制中发挥着至关重要的作用。极化子能够在低温下凝聚成一致状态,是导致超导体独特性质的因素之一。研究人员继续探索如何操控极化子的性质,以推动超导技术的发展,可能为更高效的电力传输和磁悬浮系统铺平道路。此外,极化子在有机电子学中也具有重要意义,其中有机半导体用于有机发光二极管(OLED)和有机太阳能电池等设备。这些材料中极化子的存在可以影响电荷传输机制和整体设备效率。理解极化子在有机材料中的动态行为使科学家和工程师能够通过优化材料属性和增强电荷迁移率来设计性能更好的设备。总之,极化子的研究是一个引人入胜的研究领域,连接了理论物理和实际应用。从影响材料导电性到在超导性和有机电子学机制中发挥关键作用,极化子对于推进我们对凝聚态物理的理解至关重要。随着技术的不断发展,进一步探索极化子可能会开启材料科学和工程的新可能性,导致能够改变各个行业的创新。