thermodynamical parameter

简明释义

热力学参数

英英释义

A thermodynamical parameter is a measurable quantity that characterizes the state of a thermodynamic system, such as temperature, pressure, volume, or entropy.

热力学参数是表征热力学系统状态的可测量量,如温度、压力、体积或熵。

例句

1.The study of heat engines often involves analyzing the thermodynamical parameter 热力学参数 known as efficiency.

热机的研究通常涉及分析被称为效率的热力学参数

2.During the experiment, we measured various thermodynamical parameters 热力学参数 to assess the system's performance.

在实验过程中,我们测量了各种热力学参数以评估系统的性能。

3.In order to optimize the reactor design, we must consider the thermodynamical parameter 热力学参数 of pressure.

为了优化反应堆设计,我们必须考虑压力这一热力学参数

4.The thermodynamical parameter 热力学参数 of enthalpy is essential for understanding energy changes in chemical reactions.

焓这一热力学参数对于理解化学反应中的能量变化至关重要。

5.The thermodynamical parameter 热力学参数 of temperature plays a crucial role in determining the phase of a substance.

温度这一热力学参数在决定物质的相态中起着至关重要的作用。

作文

Thermodynamics is a branch of physics that deals with heat, work, and the forms of energy. At its core, it provides a framework for understanding how energy is transferred and transformed in various systems. One of the essential concepts in thermodynamics is the idea of a thermodynamical parameter (热力学参数), which refers to any measurable quantity that can describe the state of a thermodynamic system. These parameters include temperature, pressure, volume, and internal energy, among others. Understanding these parameters is crucial for analyzing the behavior of systems in thermal equilibrium and predicting how they will respond to changes in their environment.In practical applications, thermodynamical parameters (热力学参数) play a significant role in engineering and physical sciences. For instance, in designing engines or refrigerators, engineers must carefully consider how these parameters interact. The efficiency of an engine can be determined by examining the relationship between the input energy and the output work, which is influenced by the thermodynamical parameters (热力学参数) such as temperature and pressure. By optimizing these parameters, engineers can improve the performance of machines and reduce energy consumption.Moreover, in the field of chemistry, thermodynamical parameters (热力学参数) are vital for understanding chemical reactions. The concept of Gibbs free energy, for example, incorporates several thermodynamical parameters (热力学参数) to determine whether a reaction will proceed spontaneously. A negative change in Gibbs free energy indicates that the reaction is favorable under the given conditions. Thus, chemists often manipulate thermodynamical parameters (热力学参数) like temperature and pressure to drive reactions toward desired products.In addition to practical applications, thermodynamical parameters (热力学参数) also have theoretical implications. The laws of thermodynamics provide insights into the fundamental principles governing all physical processes. For example, the first law of thermodynamics, which is the law of energy conservation, relates changes in internal energy to heat added to the system and work done by the system. This relationship is expressed using thermodynamical parameters (热力学参数) and highlights the interdependence of energy, heat, and work.Furthermore, the second law of thermodynamics introduces the concept of entropy, a measure of disorder in a system. Entropy is another important thermodynamical parameter (热力学参数) that helps explain why certain processes are irreversible. As systems evolve towards equilibrium, entropy tends to increase, illustrating the natural tendency towards disorder. This principle has profound implications not only in physics but also in information theory, biology, and even economics.In conclusion, the study of thermodynamical parameters (热力学参数) is fundamental to understanding the behavior of physical systems. These parameters are essential for both theoretical analysis and practical applications across various fields. Whether one is designing a new technology, conducting a scientific experiment, or simply trying to understand the world around them, a solid grasp of thermodynamical parameters (热力学参数) is indispensable. As we continue to explore the complexities of energy and matter, the importance of these parameters will only grow, highlighting the interconnectedness of all scientific disciplines.

热力学是物理学的一个分支,涉及热量、功和能量的形式。其核心提供了一个框架,用于理解能量如何在各种系统中转移和转化。热力学中的一个基本概念是“热力学参数”,指的是任何可以描述热力学系统状态的可测量量。这些参数包括温度、压力、体积和内能等。理解这些参数对于分析处于热平衡状态的系统的行为以及预测它们将如何对环境变化作出反应至关重要。在实际应用中,“热力学参数”在工程和物理科学中发挥着重要作用。例如,在设计发动机或冰箱时,工程师必须仔细考虑这些参数之间的相互作用。发动机的效率可以通过检查输入能量与输出功之间的关系来确定,而这种关系受到“热力学参数”如温度和压力的影响。通过优化这些参数,工程师可以提高机器的性能并减少能量消耗。此外,在化学领域,“热力学参数”对于理解化学反应至关重要。例如,自由能的概念结合了多个“热力学参数”以确定反应在给定条件下是否会自发进行。自由能的负变化表明反应在给定条件下是有利的。因此,化学家经常操控“热力学参数”如温度和压力,以推动反应朝向所需产品。除了实际应用外,“热力学参数”还具有理论意义。热力学定律提供了对所有物理过程的基本原则的洞察。例如,热力学第一定律,即能量守恒定律,将内能的变化与加入系统的热量和系统所做的功联系起来。这种关系用“热力学参数”表达,突显了能量、热量和功之间的相互依赖性。此外,热力学第二定律引入了熵的概念,这是系统无序程度的量度。熵是另一个重要的“热力学参数”,有助于解释为什么某些过程是不可逆的。随着系统向平衡演变,熵往往增加,说明自然趋向于无序。这一原理不仅在物理学中具有深远的影响,也在信息理论、生物学甚至经济学中有所体现。总之,研究“热力学参数”是理解物理系统行为的基础。这些参数对于各个领域的理论分析和实际应用都是必不可少的。无论是设计新技术、进行科学实验,还是仅仅试图理解周围的世界,对“热力学参数”的牢固掌握都是不可或缺的。随着我们继续探索能量和物质的复杂性,这些参数的重要性只会增加,突显出所有科学学科之间的相互联系。

相关单词

thermodynamical

thermodynamical详解:怎么读、什么意思、用法