helical cage
简明释义
螺旋形钢筋骨架
英英释义
A helical cage is a structural arrangement or framework that has a spiral or twisted shape, often used to contain or support objects within its coils. | 螺旋笼是一种具有螺旋或扭曲形状的结构安排或框架,通常用于包含或支撑其线圈内的物体。 |
例句
1.The new design features a helical cage that enhances the structural integrity of the device.
新的设计采用了一个螺旋笼,增强了设备的结构完整性。
2.The helical cage design is crucial for maintaining the stability of the structure under load.
该螺旋笼设计对于在负载下维持结构的稳定性至关重要。
3.Engineers have developed a helical cage mechanism that improves the performance of the transmission system.
工程师们开发了一种螺旋笼机制,改善了传动系统的性能。
4.The helical cage in this model allows for better airflow and cooling efficiency.
这个模型中的螺旋笼允许更好的气流和冷却效率。
5.In the field of nanotechnology, researchers are exploring the use of a helical cage to encapsulate drug molecules for targeted delivery.
在纳米技术领域,研究人员正在探索使用螺旋笼封装药物分子以实现靶向递送。
作文
In the realm of molecular biology and biochemistry, structures play a crucial role in understanding the functions of various biological molecules. One such intriguing structure is the helical cage, which can be found in certain proteins and nucleic acids. The term helical cage refers to a three-dimensional arrangement where molecules are organized in a helical pattern, creating a cage-like structure that can encapsulate other molecules or ions. This unique configuration not only provides stability but also facilitates specific interactions essential for biological processes.The helical cage is often observed in the context of viral proteins, where it serves as a protective shell for the viral genome. For example, in some viruses, the protein capsid forms a helical cage that encases the viral RNA or DNA, safeguarding it from degradation while ensuring that it can be efficiently delivered into host cells upon infection. This mechanism highlights the evolutionary significance of the helical cage in viral replication and transmission.Furthermore, the concept of the helical cage extends beyond virology. In synthetic chemistry, researchers have designed artificial molecules that mimic this structure to create nanocarriers for drug delivery. These nanocarriers can encapsulate therapeutic agents within their helical cage, allowing for targeted delivery to specific tissues or cells. By controlling the release of drugs from these cages, scientists aim to enhance the efficacy of treatments while minimizing side effects.In addition to its biological implications, the helical cage serves as an inspiration for material science. Researchers are exploring the potential of designing new materials that incorporate the principles of the helical cage structure. Such materials could exhibit unique mechanical properties, making them suitable for various applications, including aerospace engineering and biomedical devices.Moreover, the study of the helical cage structure has opened avenues for understanding the principles of molecular recognition. Molecules that can specifically bind to the helical cage can be utilized in biosensors, where changes in binding events can signal the presence of particular substances. This capability is particularly valuable in medical diagnostics, where early detection of diseases is crucial for effective treatment.In conclusion, the helical cage is a fascinating structural motif that plays a vital role in various scientific fields, from biology to synthetic chemistry and material science. Its ability to encapsulate and protect biological molecules while facilitating interactions underscores its importance in nature and technology. As research progresses, the full potential of the helical cage will likely continue to unfold, paving the way for innovative solutions to complex challenges in health and materials science.
在分子生物学和生物化学领域,结构在理解各种生物分子的功能中起着至关重要的作用。其中一个引人入胜的结构是螺旋笼,它可以在某些蛋白质和核酸中找到。术语螺旋笼指的是一种三维排列,其中分子以螺旋模式组织,形成一种笼状结构,可以封装其他分子或离子。这种独特的配置不仅提供了稳定性,还促进了对生物过程至关重要的特定相互作用。螺旋笼通常在病毒蛋白的背景下观察到,它作为病毒基因组的保护壳。例如,在某些病毒中,蛋白质外壳形成了一种螺旋笼,包裹着病毒RNA或DNA,保护其免受降解,同时确保在感染时能够有效地传递到宿主细胞。这种机制突显了螺旋笼在病毒复制和传播中的进化重要性。此外,螺旋笼的概念超越了病毒学。在合成化学中,研究人员设计了模仿这种结构的人工分子,以创造用于药物递送的纳米载体。这些纳米载体可以将治疗剂封装在它们的螺旋笼中,从而允许针对特定组织或细胞的靶向递送。通过控制这些笼子中药物的释放,科学家们旨在提高治疗的有效性,同时最小化副作用。除了其生物学意义外,螺旋笼也为材料科学提供了灵感。研究人员正在探索设计新材料的潜力,这些材料包含螺旋笼结构的原理。这些材料可能表现出独特的机械性能,使其适合于各种应用,包括航空航天工程和生物医学设备。此外,对螺旋笼结构的研究为理解分子识别的原理开辟了途径。能够特异性结合螺旋笼的分子可以用于生物传感器,其中结合事件的变化可以信号特定物质的存在。这种能力在医学诊断中尤其有价值,因为早期检测疾病对于有效治疗至关重要。总之,螺旋笼是一种迷人的结构模式,在生物学、合成化学和材料科学等多个科学领域发挥着重要作用。它封装和保护生物分子的能力,同时促进相互作用,突显了它在自然和技术中的重要性。随着研究的进展,螺旋笼的全部潜力可能会继续展开,为健康和材料科学中的复杂挑战提供创新解决方案。
相关单词