helical binding

简明释义

螺纹钢筋

英英释义

Helical binding refers to a method of fastening or securing materials in a spiral or corkscrew manner, often used in the context of notebooks or spirals that allow pages to turn freely.

螺旋装订指的是以螺旋或螺旋状的方式固定或固定材料的方法,通常用于笔记本或螺旋装订,使页面能够自由翻动。

例句

1.The new DNA model demonstrates how helical binding 螺旋结合 occurs between complementary nucleotides.

新的DNA模型展示了互补核苷酸之间如何发生螺旋结合

2.In structural biology, understanding helical binding 螺旋结合 is crucial for protein folding.

在结构生物学中,理解螺旋结合对蛋白质折叠至关重要。

3.Scientists have discovered that helical binding 螺旋结合 plays a role in cellular communication.

科学家发现螺旋结合在细胞通信中发挥着作用。

4.The design of the new polymer relies on helical binding 螺旋结合 to maintain its strength.

新聚合物的设计依赖于螺旋结合来保持其强度。

5.Researchers are studying the helical binding 螺旋结合 mechanisms in proteins to develop better drugs.

研究人员正在研究蛋白质中的螺旋结合机制,以开发更好的药物。

作文

The concept of helical binding is often encountered in various scientific and engineering fields, particularly in molecular biology and materials science. To understand this term better, we can start by examining its components. The word 'helical' refers to a spiral shape, much like the structure of a spring or a corkscrew. This spiral configuration is not only aesthetically pleasing but also serves significant functional purposes in nature and technology. For instance, the double helix structure of DNA, which is crucial for genetic information storage and transfer, exemplifies the importance of helical binding in biological systems.In molecular biology, helical binding describes the way certain molecules interact with each other in a spiral formation. This type of binding allows for a more compact and efficient arrangement of molecules, which is vital for cellular processes. For example, proteins often exhibit helical binding patterns that enable them to perform their functions effectively. The helical structure can influence how proteins fold and interact with other biomolecules, impacting everything from enzyme activity to the stability of cellular structures.Moreover, helical binding is not limited to biological systems. In materials science, engineers and researchers study this phenomenon to design stronger and more resilient materials. For instance, the helical arrangement of fibers in composite materials can enhance their tensile strength and flexibility. This principle is applied in various industries, including aerospace, automotive, and construction, where the durability of materials is paramount.The significance of helical binding extends even further into the realm of nanotechnology. Researchers are exploring how helical binding can be utilized to create nanoscale devices and materials that mimic biological functions. By understanding how molecules bind in a helical manner, scientists can design innovative solutions for drug delivery systems, biosensors, and even artificial tissues. These advancements could revolutionize medicine and improve the quality of life for many individuals.In conclusion, helical binding is a multifaceted concept that plays a crucial role in both biological and synthetic systems. Its applications range from the fundamental processes of life to cutting-edge technological innovations. As we continue to explore the intricacies of helical binding, we unlock new possibilities for scientific advancement and practical applications that can benefit society as a whole. Understanding this term not only enriches our knowledge of molecular interactions but also inspires future research and development in various fields, paving the way for discoveries that could change the world.

“螺旋结合”的概念常常出现在各种科学和工程领域,特别是在分子生物学和材料科学中。要更好地理解这个术语,我们可以先分析它的组成部分。“螺旋”一词指的是一种螺旋形状,就像弹簧或开瓶器的结构。这种螺旋构造不仅在美学上令人愉悦,而且在自然和技术中具有重要的功能用途。例如,DNA的双螺旋结构对于遗传信息的存储和转移至关重要,体现了“螺旋结合”在生物系统中的重要性。在分子生物学中,“螺旋结合”描述了某些分子以螺旋形式相互作用的方式。这种结合类型使得分子能够以更紧凑和高效的方式排列,这对细胞过程至关重要。例如,蛋白质通常表现出“螺旋结合”模式,使其能够有效地执行功能。螺旋结构可以影响蛋白质的折叠方式以及与其他生物分子的相互作用,从而影响从酶活性到细胞结构稳定性的方方面面。此外,“螺旋结合”并不限于生物系统。在材料科学中,工程师和研究人员研究这一现象,以设计出更强大和更具韧性的材料。例如,复合材料中纤维的螺旋排列可以增强其抗拉强度和柔韧性。这一原理应用于航空航天、汽车和建筑等多个行业,在这些行业中,材料的耐用性至关重要。“螺旋结合”的重要性甚至延伸到了纳米技术领域。研究人员正在探索如何利用“螺旋结合”来创建模仿生物功能的纳米级设备和材料。通过理解分子如何以螺旋方式结合,科学家可以设计出创新的药物递送系统、生物传感器,甚至人造组织。这些进展可能会彻底改变医学,并改善许多人的生活质量。总之,“螺旋结合”是一个多方面的概念,在生物和合成系统中发挥着至关重要的作用。它的应用范围从生命的基本过程到前沿技术创新。随着我们继续探索“螺旋结合”的复杂性,我们为科学进步和各领域的实际应用解锁了新的可能性。理解这个术语不仅丰富了我们对分子相互作用的认识,还激励了未来在各个领域的研究和开发,为可能改变世界的发现铺平道路。

相关单词

helical

helical详解:怎么读、什么意思、用法

binding

binding详解:怎么读、什么意思、用法