supercurrent

简明释义

[ˌsjuːpəˈkʌrənt][ˌsjʊpəˈkɜːrrənt]

n. 超电流(超导电流)

英英释义

A supercurrent is a flow of electric current that occurs in certain materials at very low temperatures, where electrical resistance drops to zero.

超电流是在某些材料在非常低温下发生的电流流动,此时电阻降为零。

单词用法

supercurrent flow

超电流流动

supercurrent state

超电流状态

maintain a supercurrent

维持超电流

generate a supercurrent

产生超电流

同义词

superconducting current

超导电流

Superconducting current flows without resistance in superconductors.

超导电流在超导体中无阻力地流动。

persistent current

持久电流

The persistent current can exist indefinitely in a superconducting loop.

持久电流可以在超导环中无限期存在。

反义词

normal current

常规电流

Normal current flows through a conductor with resistance.

常规电流通过有电阻的导体流动。

resistive current

电阻电流

Resistive current generates heat due to resistance in the circuit.

电阻电流因电路中的电阻而产生热量。

例句

1.The equilibrium distribution of kink-antikink pairs is discussed and the supercurrent transported in a chain is derived.

讨论了扭结-反扭结对的平衡分布,推导出一条分子链所输运的超导电流。

2.The equilibrium distribution of kink-antikink pairs is discussed and the supercurrent transported in a chain is derived.

讨论了扭结-反扭结对的平衡分布,推导出一条分子链所输运的超导电流。

3.In superconductors, the flow of supercurrent 超电流 occurs without any resistance.

在超导体中,超电流超电流的流动是没有任何阻力的。

4.Scientists are studying the properties of supercurrent 超电流 to improve magnetic levitation technologies.

科学家们正在研究超电流超电流的特性,以改善磁悬浮技术。

5.The ability to maintain a stable supercurrent 超电流 is crucial for quantum computing applications.

保持稳定的超电流超电流能力对于量子计算应用至关重要。

6.Engineers are developing cables that can carry supercurrent 超电流 for more efficient power distribution.

工程师们正在开发能够传输超电流超电流的电缆,以实现更高效的电力分配。

7.The research team discovered a new type of supercurrent 超电流 that could revolutionize energy transmission.

研究小组发现了一种新型的超电流超电流,可能会彻底改变能源传输。

作文

In the world of physics, particularly in the field of superconductivity, the term supercurrent refers to a current that flows indefinitely without any resistance when a material is cooled below its critical temperature. This phenomenon occurs in certain materials known as superconductors, which exhibit remarkable electrical properties. The discovery of supercurrent has not only deepened our understanding of quantum mechanics but also opened up new possibilities for technological advancements.Superconductivity was first discovered in 1911 by Heike Kamerlingh Onnes, who observed that mercury exhibited zero electrical resistance at temperatures close to absolute zero. This groundbreaking finding led to further research into other materials, and scientists soon discovered that certain alloys and compounds could also become superconductive under specific conditions. The supercurrent that flows through these materials is a result of Cooper pairs, which are pairs of electrons that move together through the lattice structure of the superconductor without scattering off impurities or lattice vibrations.The implications of supercurrent are profound. For instance, it allows for the development of highly efficient power transmission systems. Traditional electrical conductors lose energy as heat due to resistance, but superconductors can transmit electricity over long distances without any loss. This characteristic could revolutionize the way we distribute power, making it more efficient and sustainable.Moreover, supercurrent plays a crucial role in the functioning of various technologies such as magnetic resonance imaging (MRI) machines and particle accelerators. In MRI machines, superconducting magnets create strong and stable magnetic fields necessary for high-resolution imaging. Similarly, in particle accelerators, supercurrent enables the generation of powerful magnetic fields that guide charged particles along their paths at nearly the speed of light.Despite the incredible advantages offered by supercurrent, there are still challenges that researchers face. One major hurdle is the requirement for extremely low temperatures to achieve superconductivity, which can be costly and impractical for widespread use. However, the discovery of high-temperature superconductors in the 1980s has sparked renewed interest and research into materials that can operate at higher temperatures, potentially making supercurrent technology more accessible.In conclusion, the concept of supercurrent is a fascinating aspect of modern physics that has significant implications for technology and energy efficiency. As research continues and new materials are discovered, the potential applications of supercurrent may lead to innovations that could transform various industries. Understanding and harnessing this phenomenon could pave the way for a future where energy is transmitted with minimal loss, and advanced technologies become more commonplace in our daily lives. The journey of exploring supercurrent is just beginning, and it holds promise for a brighter, more efficient future for all of us.

在物理学的世界中,特别是在超导性领域,术语supercurrent指的是在材料冷却到其临界温度以下时,无限期流动而没有任何电阻的电流。这种现象发生在某些被称为超导体的材料中,这些材料表现出显著的电气特性。supercurrent的发现不仅加深了我们对量子力学的理解,还为技术进步开辟了新的可能性。超导性最早于1911年由海克·卡梅林·昂内斯发现,他观察到汞在接近绝对零度的温度下表现出零电阻。这一突破性的发现引发了对其他材料的进一步研究,科学家们很快发现某些合金和化合物在特定条件下也可以变得超导。流经这些材料的supercurrent是库珀对的结果,库珀对是成对的电子,它们通过超导体的晶格结构共同移动,而不会因杂质或晶格振动而散射。supercurrent的影响深远。例如,它使开发高效的电力传输系统成为可能。传统的电导体由于电阻而以热量的形式损失能量,但超导体可以在没有任何损失的情况下长距离传输电力。这一特性可能会彻底改变我们分配电力的方式,使其更加高效和可持续。此外,supercurrent在各种技术的功能中也发挥着关键作用,例如磁共振成像(MRI)机器和粒子加速器。在MRI机器中,超导磁体产生强大而稳定的磁场,这是高分辨率成像所必需的。同样,在粒子加速器中,supercurrent使得生成强大的磁场成为可能,从而引导带电粒子沿着接近光速的路径移动。尽管supercurrent提供了令人难以置信的优势,但研究人员仍面临一些挑战。一个主要障碍是实现超导性所需的极低温度,这可能会使其广泛应用变得成本高昂且不切实际。然而,1980年代高温超导体的发现重新激发了人们对能够在更高温度下运行的材料的研究兴趣,这可能使supercurrent技术更加可及。总之,supercurrent的概念是现代物理学中一个引人入胜的方面,对技术和能源效率具有重要意义。随着研究的不断深入和新材料的发现,supercurrent的潜在应用可能会导致创新,改变各个行业。理解和利用这一现象可能为一个能量以最小损失传输的未来铺平道路,先进技术在我们的日常生活中变得更加普遍。探索supercurrent的旅程才刚刚开始,它为我们所有人描绘了一个更光明、更高效的未来。