pyroelectric

简明释义

[ˌpaɪrəʊɪˈlektrɪk][ˌpaɪroʊɪˈlektrɪk]

adj. 热电的;焦热电的

英英释义

Relating to the ability of certain materials to generate an electric charge in response to changes in temperature.

指某些材料在温度变化时能够产生电荷的特性。

单词用法

pyroelectric effect

热电效应

同义词

thermoelectric

热电的

Thermoelectric materials convert temperature differences directly into electrical energy.

热电材料将温差直接转化为电能。

ferroelectric

铁电的

Ferroelectric materials exhibit spontaneous electric polarization that can be reversed by an external electric field.

铁电材料表现出自发的电极化,可以通过外部电场逆转。

反义词

thermoelectric

热电的

Thermoelectric materials convert temperature differences directly into electrical voltage.

热电材料将温度差直接转化为电压。

adiabatic

绝热的

Adiabatic processes are those in which no heat is transferred to or from the system.

绝热过程是指系统内没有热量转移的过程。

例句

1.A test system of pyroelectric coefficient was designed to evaluate the performance of pyroelectric materials.

设计了一个热释电系数测试系统,用它来评价热释电材料的性能。

2.Applications of the films, especially in ferroelectric memories and pyroelectric infrared detectors are described.

重点介绍了铁电薄膜在铁电存储器及热释电红外探测器方面的应用。

3.Pyroelectric material can bring polarization with the variable temperature caused by infrared radiation.

热释电材料在吸收红外辐射后其温度会发生变化,从而产生极化。

4.This article comprehensively describes the properties and operating principles of pyroelectric infrared detector using thin films.

介绍了室温非制冷型热释电薄膜红外探测器的原理和优势。

5.The discovery of pyroelectric effect is a base for laser and infrared detector.

热释电效应的发现,为激光和红外探测的应用奠定了良好的基础。

6.This sensor combines the property of a thermistor and a pyroelectric sensor.

该传感器兼有热敏电阻和热电传感器的特性。

7.An infrared imaging system using pyroelectric vidicon with revolving optical element is proposed.

本文提出一种采用热释电摄象管的回转型红外成象方案。

8.The electric charge injection is necessary to enhance pyroelectric coefficient of composite.

电荷注入机制是制成高的纯熟释电系数复合材料的必需条件。

9.The design of the intelligent thermometry system with the pyroelectric infrared television is introduced and the software is also given briefly.

介绍了热释电红外电视智能测温系统的设计方案和软硬件结构,给出了实验结果。

10.The pyroelectric 热电 effect is crucial for the functioning of infrared cameras.

热电效应对红外相机的功能至关重要。

11.Researchers are exploring pyroelectric 热电 devices for energy harvesting applications.

研究人员正在探索热电设备在能量收集应用中的潜力。

12.In some types of motion detectors, pyroelectric 热电 sensors are used to sense body heat.

在某些类型的运动探测器中,使用热电传感器来感应人体热量。

13.The pyroelectric 热电 materials can generate voltage when subjected to temperature changes.

热电材料受到温度变化时,可以产生电压。

14.The new sensor uses a pyroelectric 热电 material to detect changes in temperature.

这个新传感器使用一种热电材料来检测温度变化。

作文

The term pyroelectric refers to a property of certain materials that generate an electric charge in response to changes in temperature. This intriguing phenomenon has sparked significant interest in various fields, including electronics, energy harvesting, and even climate science. To understand the implications of pyroelectric materials, one must first delve into the principles behind their functionality.At its core, pyroelectric materials possess a unique crystalline structure that allows them to exhibit spontaneous polarization. When these materials are heated or cooled, the change in temperature leads to a shift in the polarization, resulting in the generation of an electric field. This ability to convert thermal energy into electrical energy makes pyroelectric materials particularly valuable in applications such as infrared sensors, where detecting temperature variations is crucial.One of the most common examples of pyroelectric materials is lithium tantalate. This crystal is widely used in various devices due to its high sensitivity and stability. In infrared detectors, for instance, lithium tantalate can detect minute changes in temperature caused by the presence of an object, making it essential for security systems and night-vision equipment. The versatility of pyroelectric materials extends beyond sensing applications; they are also utilized in energy harvesting technologies. By capturing waste heat from industrial processes or even body heat, pyroelectric generators can convert this thermal energy into usable electrical power, contributing to the development of sustainable energy solutions.Moreover, the research surrounding pyroelectric materials continues to evolve, with scientists exploring new compounds and composites that enhance their efficiency and performance. For example, the incorporation of nanostructures into pyroelectric materials has shown promise in improving their energy conversion capabilities. This advancement could lead to more effective devices that harness energy from everyday sources, such as temperature fluctuations in buildings or vehicles.In addition to practical applications, the study of pyroelectric phenomena also provides insights into fundamental scientific concepts. Understanding how temperature changes affect material properties can help researchers develop better models for predicting material behavior under various conditions. This knowledge is not only applicable to engineering but also has implications in fields like geology, where temperature-induced changes in rocks can influence seismic activity.Furthermore, the environmental impact of pyroelectric technologies cannot be overlooked. As the world moves towards greener alternatives, harnessing ambient heat through pyroelectric devices presents an opportunity to reduce reliance on fossil fuels. By integrating these materials into our infrastructure, we can create systems that are not only efficient but also environmentally friendly.In conclusion, the study and application of pyroelectric materials represent a fascinating intersection of physics, engineering, and environmental science. Their ability to convert temperature changes into electrical energy opens up numerous possibilities for innovation and sustainability. As research progresses, we can expect to see even more advanced pyroelectric technologies that enhance our ability to harness energy from the environment, ultimately leading to a more sustainable future.

pyroelectric”一词指的是某些材料在温度变化时产生电荷的特性。这种引人入胜的现象在电子学、能源收集甚至气候科学等多个领域引发了重大兴趣。要理解“pyroelectric”材料的意义,首先必须深入探讨其功能背后的原理。从本质上讲,“pyroelectric”材料具有独特的晶体结构,使其能够表现出自发极化。当这些材料被加热或冷却时,温度变化导致极化发生变化,从而产生电场。这种将热能转化为电能的能力使得“pyroelectric”材料在红外传感器等应用中尤为宝贵,在这些应用中,检测温度变化至关重要。最常见的“pyroelectric”材料之一是钽酸锂。这种晶体因其高灵敏度和稳定性而广泛用于各种设备中。例如,在红外探测器中,钽酸锂可以检测由于物体存在而引起的微小温度变化,这使其在安防系统和夜视设备中至关重要。“pyroelectric”材料的多样性不仅限于传感应用;它们还被用于能源收集技术中。通过捕获工业过程中的废热甚至人体热量,“pyroelectric”发电机可以将这种热能转化为可用的电力,有助于可持续能源解决方案的发展。此外,围绕“pyroelectric”材料的研究仍在不断发展,科学家们正在探索新化合物和复合材料,以提高其效率和性能。例如,将纳米结构引入“pyroelectric”材料已显示出改善其能量转换能力的前景。这一进展可能导致更有效的设备,利用日常来源的能量,例如建筑物或车辆中的温度波动。除了实际应用外,对“pyroelectric”现象的研究还提供了对基本科学概念的深入了解。理解温度变化如何影响材料特性可以帮助研究人员开发出更好的模型,以预测材料在各种条件下的行为。这一知识不仅适用于工程,还对地质学等领域有着深远的影响,因为温度诱导的岩石变化可能会影响地震活动。此外,“pyroelectric”技术的环境影响也不容忽视。随着世界向更环保的替代品迈进,通过“pyroelectric”设备捕获环境热量提供了减少对化石燃料依赖的机会。通过将这些材料整合到我们的基础设施中,我们可以创建不仅高效而且环保的系统。总之,“pyroelectric”材料的研究和应用代表了物理学、工程学和环境科学之间迷人的交汇点。它们将温度变化转化为电能的能力为创新和可持续性开辟了无数可能性。随着研究的进展,我们可以期待看到更多先进的“pyroelectric”技术,增强我们利用环境能量的能力,最终实现一个更可持续的未来。