cos
简明释义
conj. (口语)因为
abbr. 余弦(cosine)
n. (Cos)(英、西)科斯(人名)
英英释义
单词用法
一个角的余弦 | |
余弦波 | |
余弦定理 | |
余弦图 |
同义词
因为 | 我呆在家里,因为下雨了。 | ||
既然 | 既然是你的生日,我们就庆祝吧! | ||
作为 | 因为时间晚了,我们决定回去。 |
反义词
例句
1.When I come on a programme like this I'm always very nervous, 'cos I know so much.
我上这种节目时总是很紧张,因为我知道的太多。
2.Cos she not in it for sense, she's in it for distance and irritation.
因为她吵架不是为了“道理”,女生吵架是为了和你保持距离和烦死你。
3.I really liked those characters cos there was something complex about the look of them being scary but they were heroes.
我真的很喜欢那些书里的人物,看他们惊恐万分真是百感交集,但他们是英雄。
4.It contains a nested loop that calls exp , cos , and sin , followed by a loop that calls sin and SQRT .
它包含了一个嵌套的循环,该循环会调用exp 、cos以及sin,接下来是一个调用sin和sqrt的循环。
5.You're all in the dressing room together, and nobody says: 'you'd better go first cos you've got a private education.'
你们都在更衣室里的时候,也没有人会说:‘你最好先走,因为你接受过私立教育。’
6.Try typing in replot cos (x).
尝试输入replotcos (x)。
7.I'm not going to join the gym, cos 因为 I prefer outdoor activities.
我不打算加入健身房,因为我更喜欢户外活动。
8.I didn't go to the party last night, cos 因为 I was feeling unwell.
我昨晚没有去派对,因为我感觉不舒服。
9.He decided to skip the meeting, cos 因为 he had a family emergency.
他决定跳过会议,因为他有家庭紧急情况。
10.She loves reading books, cos 因为 they take her to different worlds.
她喜欢读书,因为书籍带她进入不同的世界。
11.We should leave early, cos 因为 the traffic is usually bad in the evening.
我们应该早点出发,因为晚上交通通常很糟糕。
作文
In the realm of mathematics, particularly in trigonometry, one often encounters the term cos, which stands for cosine. The cosine function is fundamental in studying the relationships between the angles and sides of triangles, especially right-angled triangles. To understand the significance of cos, we first need to grasp its definition. The cosine of an angle in a right triangle is defined as the ratio of the length of the adjacent side to the length of the hypotenuse. This simple yet powerful concept allows us to solve various problems related to angles and distances.For example, consider a right triangle where one angle measures 30 degrees. The length of the hypotenuse is 10 units. Using the cosine function, we can find the length of the adjacent side. The formula states that cos(30°) equals the length of the adjacent side divided by the hypotenuse. Therefore, we can express this mathematically as:cos(30°) = Adjacent / HypotenuseBy rearranging the equation, we find:Adjacent = Hypotenuse * cos(30°)Substituting the known values, we get:Adjacent = 10 * cos(30°)This calculation leads us to discover that the length of the adjacent side is approximately 8.66 units. Such applications of cos are not limited to theoretical mathematics; they extend into practical fields such as engineering, physics, and computer graphics.Moreover, the cosine function has periodic properties. It repeats its values in a regular pattern, which is crucial for analyzing waveforms and oscillations. For instance, in physics, when studying sound waves or light waves, the cos function helps describe the wave's behavior over time. The equation of a wave can often be expressed using the cosine function, demonstrating its importance in understanding natural phenomena.In addition to its applications in geometry and physics, cos plays a significant role in calculus. The derivative of the cosine function is the negative sine function, and understanding this relationship is essential for solving complex problems in calculus. For students pursuing higher education in mathematics or related fields, mastering the properties and applications of cos is vital.Furthermore, the cosine function is also utilized in computer programming, particularly in graphics and game development. When creating animations or simulating motion, developers often use cos to calculate the position of objects in a two-dimensional or three-dimensional space. By manipulating angles and distances through the cosine function, programmers can create realistic movements and visual effects.In conclusion, the term cos or cosine is more than just a mathematical function; it is a cornerstone of various scientific and practical applications. From solving triangles to analyzing waves and programming animations, the utility of cos is vast and profound. Understanding its definition, properties, and applications is essential for anyone interested in mathematics, science, or technology. Embracing the concept of cos opens doors to a deeper comprehension of the world around us, allowing us to explore and innovate in countless ways.
在数学领域,特别是在三角学中,人们经常会遇到术语cos,它代表余弦。余弦函数在研究三角形的角度和边之间的关系时是基础,尤其是在直角三角形中。要理解cos的重要性,我们首先需要掌握它的定义。在直角三角形中,一个角的余弦被定义为邻边的长度与斜边的长度之比。这个简单而强大的概念使我们能够解决与角度和距离相关的各种问题。例如,考虑一个直角三角形,其中一个角为30度。斜边的长度为10个单位。使用余弦函数,我们可以找到邻边的长度。公式表示为:cos(30°)等于邻边长度除以斜边长度。因此,我们可以将其数学表达为:cos(30°) = 邻边 / 斜边通过重新排列方程,我们发现:邻边 = 斜边 * cos(30°)代入已知值,我们得到:邻边 = 10 * cos(30°)这个计算使我们发现邻边的长度约为8.66个单位。cos的这种应用不仅限于理论数学;它扩展到工程、物理和计算机图形等实际领域。此外,余弦函数具有周期性特性。它以规律的模式重复其值,这对于分析波形和振荡至关重要。例如,在物理学中,当研究声波或光波时,cos函数有助于描述波的行为随时间的变化。波的方程通常可以用余弦函数表示,展示了它在理解自然现象中的重要性。除了在几何和物理中的应用外,cos在微积分中也发挥着重要作用。余弦函数的导数是负正弦函数,理解这种关系对于解决复杂的微积分问题至关重要。对于追求数学或相关领域高等教育的学生来说,掌握cos的性质和应用是至关重要的。此外,余弦函数还被用于计算机编程中,特别是在图形和游戏开发中。当创建动画或模拟运动时,开发人员通常使用cos来计算二维或三维空间中物体的位置。通过操纵角度和距离,程序员可以创建逼真的运动和视觉效果。总之,术语cos或余弦不仅仅是一个数学函数;它是各种科学和实际应用的基石。从解决三角形到分析波动和编程动画,cos的用途广泛而深远。理解它的定义、性质和应用对于任何对数学、科学或技术感兴趣的人都是必不可少的。掌握cos的概念为我们打开了更深入理解周围世界的大门,使我们能够以无数种方式进行探索和创新。