molecularity
简明释义
英[məʊlekjʊˈlærɪti]美[məlekjʊˈlærɪti]
n. 分子性;分子状态;[化学] 反应分子数
英英释义
Molecularity refers to the number of molecules that participate in a single reaction step. | 分子性指的是在单一反应步骤中参与反应的分子数量。 |
单词用法
一级分子性 | |
二级分子性 | |
总体分子性 | |
反应的分子性 | |
确定分子性 | |
计算分子性 |
同义词
反义词
例句
1.They are not only synergic in biologic activities but also interactive in molecularity, which is regulated by the genes of virulence island.
各毒力因子不仅在生物学活性上具有协同作用,而且在分子水平上也是相互影响,受毒力岛上调控基因调节。
2.They are not only synergic in biologic activities but also interactive in molecularity, which is regulated by the genes of virulence island.
各毒力因子不仅在生物学活性上具有协同作用,而且在分子水平上也是相互影响,受毒力岛上调控基因调节。
3.In elementary reactions, the molecularity can be unimolecular, bimolecular, or termolecular.
在基本反应中,分子性可以是单分子、双分子或三分子。
4.Determining the molecularity is crucial for understanding reaction mechanisms.
确定分子性对理解反应机制至关重要。
5.The molecularity of the reaction affects the rate law expression.
反应的分子性影响速率法则表达式。
6.For a reaction to be classified as bimolecular, its molecularity must involve two reactant molecules.
要将反应归类为双分子,其分子性必须涉及两个反应物分子。
7.The molecularity of a reaction indicates the number of molecules involved in the rate-determining step.
反应的分子性指的是在速率决定步骤中涉及的分子数量。
作文
In the field of chemistry, understanding the concept of molecularity is crucial for grasping how chemical reactions occur. Molecularity refers to the number of reactant molecules that participate in an elementary reaction step. This fundamental idea helps chemists categorize reactions based on their complexity and predict the outcomes of various chemical processes. To illustrate the significance of molecularity, let’s consider a simple reaction: the combination of hydrogen and oxygen to form water. In this case, two hydrogen molecules and one oxygen molecule collide to create two water molecules. Here, the molecularity of the reaction is three, as it involves three reactant molecules. This reaction can be classified as a termolecular reaction, which is relatively rare compared to unimolecular or bimolecular reactions.Unimolecular reactions involve only a single reactant molecule undergoing a transformation. For example, the decomposition of a molecule into two or more products is a classic example of unimolecular molecularity. A well-known instance is the breakdown of a nitrogen dioxide (NO2) molecule into nitric oxide (NO) and oxygen (O2). The simplicity of unimolecular reactions allows for easier analysis and prediction of reaction rates.On the other hand, bimolecular reactions involve two reactant molecules. A common example is the reaction between two gaseous reactants, such as hydrogen and chlorine, to form hydrogen chloride (HCl). In this bimolecular reaction, the molecularity is two, indicating that two molecules are colliding and reacting simultaneously. Bimolecular reactions are more frequent than termolecular reactions due to the statistical likelihood of two molecules encountering each other in a given volume.The concept of molecularity also plays a vital role in determining the rate laws of reactions. The rate of a reaction is often dependent on the concentration of the reactants involved. For instance, in a bimolecular reaction, the rate law will typically be first order with respect to each reactant. This means that if the concentration of either reactant is doubled, the reaction rate will also double, illustrating a direct relationship between concentration and reaction speed.Understanding molecularity provides insights into the mechanisms of reactions. It allows chemists to design experiments that can help elucidate how different factors affect reaction rates and pathways. By knowing whether a reaction is unimolecular, bimolecular, or termolecular, scientists can make informed predictions about how changes in temperature, pressure, or concentration will influence the overall reaction dynamics.In conclusion, molecularity is a key concept in the study of chemical kinetics and reaction mechanisms. It not only helps classify reactions but also aids in understanding the intricacies of how reactants interact at the molecular level. As chemists continue to explore the vast world of chemical reactions, the importance of molecularity remains a fundamental aspect of their research, guiding them toward new discoveries and applications in various fields, including pharmaceuticals, materials science, and environmental chemistry.
在化学领域,理解分子性的概念对于掌握化学反应的发生至关重要。分子性是指在一个初级反应步骤中参与反应的反应物分子的数量。这一基本概念帮助化学家根据反应的复杂性对反应进行分类,并预测各种化学过程的结果。为了说明分子性的重要性,让我们考虑一个简单的反应:氢气和氧气结合形成水。在这种情况下,两个氢分子和一个氧分子碰撞生成两个水分子。在这里,该反应的分子性为三,因为涉及到三个反应物分子。这个反应可以被归类为三分子反应,而与单分子或双分子反应相比,这种反应相对较少见。单分子反应仅涉及一个反应物分子经历转变。例如,一个分子分解成两个或多个产物是单分子分子性的经典例子。一个众所周知的实例是二氧化氮(NO2)分解为一氧化氮(NO)和氧气(O2)。单分子反应的简单性使得分析和预测反应速率更加容易。另一方面,双分子反应涉及两个反应物分子。一个常见的例子是两个气态反应物之间的反应,例如氢气和氯气反应生成氯化氢(HCl)。在这个双分子反应中,分子性为二,表明两个分子同时碰撞并反应。与三分子反应相比,双分子反应更为频繁,因为在给定体积内,两个分子相遇的统计可能性更高。分子性的概念在确定反应速率法则方面也起着至关重要的作用。反应的速率通常依赖于参与反应的反应物的浓度。例如,在一个双分子反应中,速率法则通常会对每个反应物呈一阶。这意味着如果任一反应物的浓度加倍,反应速率也将加倍,说明浓度与反应速度之间存在直接关系。理解分子性为揭示反应机制提供了洞察力。它使化学家能够设计实验,从而帮助阐明不同因素如何影响反应速率和路径。通过了解一个反应是单分子、双分子还是三分子,科学家可以对温度、压力或浓度的变化如何影响整体反应动态做出明智的预测。总之,分子性是研究化学动力学和反应机制中的关键概念。它不仅有助于对反应进行分类,还帮助理解反应物在分子层面上的相互作用的复杂性。随着化学家们继续探索化学反应的广阔世界,分子性的重要性仍然是他们研究的基本方面,引导他们朝着新的发现和应用迈进,涉及制药、材料科学和环境化学等多个领域。