absolute error
简明释义
绝对误差
英英释义
The absolute error is the difference between the measured value and the true value, expressed as a non-negative number. | 绝对误差是测量值与真实值之间的差异,以非负数表示。 |
例句
1.In our experiment, the absolute error of the final result was less than 1%, showing high precision in our measurements, or 绝对误差小于1%。
在我们的实验中,最终结果的绝对误差小于1%,显示出我们测量的高精度。
2.When assessing the accuracy of the thermometer, we found that the absolute error was within acceptable limits, which means the 绝对误差 is negligible.
在评估温度计的准确性时,我们发现绝对误差在可接受的范围内,这意味着absolute error可以忽略不计。
3.To improve our calculations, we analyzed the absolute error from previous experiments, which helped us understand the 绝对误差来源。
为了改善我们的计算,我们分析了之前实验中的绝对误差,这帮助我们理解了absolute error的来源。
4.The engineer reported that the absolute error in the construction dimensions was minimal, reflecting a 绝对误差的最小化。
工程师报告说,施工尺寸的绝对误差最小,反映了absolute error的最小化。
5.The absolute error of the measurement was calculated to be 0.5 cm, indicating a 绝对误差 of half a centimeter.
测量的绝对误差被计算为0.5厘米,表明了半厘米的absolute error。
作文
In the realm of mathematics and science, accuracy is paramount. One concept that helps us measure the accuracy of our calculations is the absolute error. The absolute error refers to the difference between the measured value and the actual value, without considering the direction of the error. This means that whether our measurement is higher or lower than the true value, the absolute error will always be a non-negative number. Understanding this concept is crucial for anyone working with data, as it provides a clear picture of how close we are to the true value.For instance, if a thermometer reads 102 degrees Fahrenheit when the actual temperature is 100 degrees, the absolute error in this case would be |102 - 100| = 2 degrees. This simple calculation gives us an immediate sense of how inaccurate our measurement is. In contrast, relative error, which considers the size of the error in relation to the actual value, can sometimes obscure the significance of the absolute error. In fields such as engineering, physics, and statistics, knowing the absolute error allows professionals to assess the reliability of their measurements and make informed decisions based on those results.Moreover, the absolute error is particularly useful when dealing with repeated measurements. Suppose you are conducting an experiment to measure the boiling point of water. You take five measurements and find values of 100.1, 100.3, 99.8, 100.0, and 100.2 degrees. The actual boiling point is known to be 100 degrees. By calculating the absolute error for each measurement, you can evaluate the consistency and reliability of your data. The absolute errors for these measurements would be 0.1, 0.3, 0.2, 0.0, and 0.2 degrees, respectively. Analyzing these values helps you identify any outliers and understand the precision of your measuring instrument.In addition to its practical applications, the concept of absolute error also has theoretical implications. It serves as a foundation for more complex statistical analyses and quality control processes. For example, in manufacturing, understanding the absolute error of produced items can help maintain product quality and ensure that items meet safety standards. If a company knows the acceptable range of absolute error for a certain product, they can implement better quality control measures to minimize defects and improve customer satisfaction.In conclusion, the absolute error is a fundamental concept that plays a critical role in various fields of study and industry. By providing a straightforward way to quantify the difference between a measured value and the true value, it enables scientists, engineers, and statisticians to assess accuracy and reliability effectively. Whether in academic research or practical applications, understanding the absolute error is essential for ensuring the integrity of data and making sound decisions based on that information. As we continue to advance in technology and data analysis, the importance of accurately measuring and interpreting absolute error will only grow, underscoring the need for rigorous standards in measurement and reporting.
在数学和科学领域,准确性至关重要。一个帮助我们衡量计算准确性的概念是绝对误差。绝对误差指的是测量值与实际值之间的差异,而不考虑误差的方向。这意味着,无论我们的测量高于还是低于真实值,绝对误差始终是一个非负数。理解这一概念对于任何处理数据的人来说都是至关重要的,因为它提供了我们与真实值接近程度的清晰图景。例如,如果一个温度计显示102华氏度,而实际温度为100华氏度,那么此情况下的绝对误差将是|102 - 100| = 2华氏度。这一简单的计算使我们立即感知到测量的不准确性。相比之下,相对误差考虑误差相对于实际值的大小,有时会模糊绝对误差的重要性。在工程、物理和统计等领域,了解绝对误差使专业人员能够评估测量的可靠性,并根据这些结果做出明智的决策。此外,绝对误差在处理重复测量时尤其有用。假设您正在进行实验以测量水的沸点。您进行五次测量,得到的值分别为100.1、100.3、99.8、100.0和100.2华氏度。已知实际沸点为100华氏度。通过计算每次测量的绝对误差,您可以评估数据的一致性和可靠性。这些测量的绝对误差分别为0.1、0.3、0.2、0.0和0.2华氏度。分析这些值有助于您识别任何异常值并理解测量仪器的精度。除了其实际应用外,绝对误差的概念还具有理论意义。它为更复杂的统计分析和质量控制过程奠定了基础。例如,在制造业中,了解生产物品的绝对误差可以帮助维护产品质量,并确保物品符合安全标准。如果公司知道某种产品的可接受绝对误差范围,他们可以实施更好的质量控制措施,以最小化缺陷并提高客户满意度。总之,绝对误差是一个基本概念,在各个研究领域和行业中发挥着关键作用。通过提供一种简单的方法来量化测量值与真实值之间的差异,它使科学家、工程师和统计学家能够有效地评估准确性和可靠性。无论是在学术研究还是实际应用中,理解绝对误差对于确保数据的完整性以及基于该信息做出合理决策至关重要。随着我们在技术和数据分析方面的不断进步,准确测量和解释绝对误差的重要性只会增加,这突显了在测量和报告中严格标准的必要性。
相关单词