postfix
简明释义
n. [语] 后缀;词尾
vt. 加字尾于
复 数 p o s t f i x e s
第 三 人 称 单 数 p o s t f i x e s
现 在 分 词 p o s t f i x i n g
过 去 式 p o s t f i x e d
过 去 分 词 p o s t f i x e d
英英释义
单词用法
添加后缀 | |
使用后缀 | |
转换为后缀 | |
后缀递增 | |
后缀递减 | |
后缀语法 |
同义词
反义词
前缀 | The word 'unhappy' has the prefix 'un-' which negates the word. | 单词'unhappy'的前缀是'un-',表示否定。 | |
中缀 | In programming, an infix operator is placed between its operands. | 在编程中,中缀运算符位于其操作数之间。 |
例句
1.Convert infix to postfix source code integrity, and can be used directly.
转换缀以后缀的源代码完整,并可以直接使用。
2.Postfix operators interact poorly with semicolon inference.
后缀运算符互动不佳,分号推理。
3.Finally, ZSH supports a number of postfix qualifiers.
最后,z sh支持许多后缀修饰符。
4.Why to avoid postfix operator in C + +?
为什么避免后缀运算符在c+ +中?
5.Does Postfix operator really has a higher precedence than prefix?
是否真的有比前缀,后缀式操作符的优先级更高?
6.If the postfix expression was correctly formed, the stack should be empty.
若后缀表达式格式正确,那么堆栈应该为空。
7.In programming, a postfix 后缀 notation is often used for evaluating expressions.
在编程中,postfix 后缀 表示法常用于计算表达式。
8.The programming language supports postfix 后缀 operators for easier syntax.
该编程语言支持 postfix 后缀 运算符,以便于语法书写。
9.In the context of linguistics, a postfix 后缀 can change the meaning of a word.
在语言学中,postfix 后缀 可以改变一个词的意思。
10.When creating usernames, adding a postfix 后缀 can help differentiate between users.
在创建用户名时,添加一个 postfix 后缀 可以帮助区分用户。
11.The email system requires a postfix 后缀 to identify the domain of the address.
电子邮件系统需要一个 postfix 后缀 来识别地址的域名。
作文
In the realm of computer science and programming, the term postfix (后缀) holds significant importance, especially in the context of data structures and algorithms. The postfix notation, also known as Reverse Polish Notation (RPN), is a mathematical notation in which every operator follows all of its operands. This means that instead of writing an expression like '3 + 4', one would write it as '3 4 +'. This method eliminates the need for parentheses to denote operation order, making it particularly advantageous in computing where efficiency is crucial.The history of postfix notation can be traced back to the work of mathematician Jan Łukasiewicz, who developed a method of notation that simplified logical expressions. His invention paved the way for easier computation in programming languages and calculators. In fact, many modern programming languages, such as Forth and PostScript, utilize postfix notation to streamline operations and enhance performance.One of the primary advantages of using postfix is its ability to simplify the parsing process for compilers and interpreters. When an expression is written in postfix, there is no ambiguity about the order of operations. This allows for faster evaluation and less complex code for the compiler to interpret. For example, consider the expression '5 1 2 + 4 * + 3 -'. In postfix, this expression can be evaluated step-by-step without confusion, leading to a final result of 14.Moreover, postfix notation is particularly useful in stack-based programming environments. A stack is a data structure that follows the Last In First Out (LIFO) principle, where the last element added is the first one to be removed. In a stack-based system, operands are pushed onto the stack, and when an operator is encountered, the required number of operands is popped off the stack, the operation is performed, and the result is pushed back onto the stack. This mechanism aligns perfectly with the postfix format, making it efficient for both execution and memory management.Despite its advantages, postfix notation is not widely used in everyday arithmetic by the general public. Most people are accustomed to the conventional infix notation, where operators are placed between operands. However, for those involved in programming or computational mathematics, understanding postfix is essential. It can enhance one's ability to write more efficient code and understand how compilers interpret expressions.In conclusion, the concept of postfix (后缀) notation plays a vital role in the field of computer science and programming. Its ability to streamline operations, eliminate ambiguity, and integrate seamlessly with stack-based systems makes it a powerful tool for developers and mathematicians alike. As technology continues to evolve, the relevance of postfix notation will undoubtedly persist, influencing the development of new programming languages and computational techniques. Understanding postfix is not just beneficial; it is essential for anyone looking to deepen their knowledge in the world of programming and algorithms.
在计算机科学和编程领域,术语postfix(后缀)具有重要意义,尤其是在数据结构和算法的上下文中。postfix表示法,也称为逆波兰表示法(RPN),是一种数学表示法,其中每个运算符都跟随其所有操作数。这意味着,与写出表达式“3 + 4”不同,人们会将其写为“3 4 +”。这种方法消除了使用括号来表示操作顺序的需要,使其在计算中尤为有利,因为效率至关重要。postfix表示法的历史可以追溯到数学家扬·卢卡斯维奇的工作,他开发了一种简化逻辑表达式的表示法。他的发明为编程语言和计算器中的更容易计算铺平了道路。事实上,许多现代编程语言,如Forth和PostScript,利用postfix表示法来简化操作并提高性能。使用postfix的主要优点之一是它能够简化编译器和解释器的解析过程。当一个表达式以postfix形式书写时,操作顺序没有歧义。这允许更快的评估和编译器解释的代码更少复杂。例如,考虑表达式“5 1 2 + 4 * + 3 -”。在postfix中,这个表达式可以逐步评估而不会产生混淆,最终结果为14。此外,postfix表示法在基于堆栈的编程环境中特别有用。堆栈是一种遵循后进先出(LIFO)原则的数据结构,其中最后添加的元素是第一个被移除的。在基于堆栈的系统中,操作数被推入堆栈,当遇到运算符时,所需数量的操作数从堆栈中弹出,执行操作,然后将结果推回堆栈。这种机制与postfix格式完全一致,使得执行和内存管理都变得高效。尽管有其优点,但postfix表示法在普通公众日常算术中并不广泛使用。大多数人习惯于传统的中缀表示法,即运算符位于操作数之间。然而,对于参与编程或计算数学的人来说,理解postfix是至关重要的。它可以增强一个人编写更高效代码的能力,并理解编译器如何解释表达式。总之,postfix(后缀)表示法的概念在计算机科学和编程领域发挥着至关重要的作用。它能够简化操作、消除歧义,并与基于堆栈的系统无缝集成,使其成为开发人员和数学家强大的工具。随着技术的不断发展,postfix表示法的相关性无疑会持续影响新编程语言和计算技术的发展。理解postfix不仅是有益的;对于任何想要加深对编程和算法世界了解的人来说,它都是必不可少的。