secondary electron emission
简明释义
二次电子放射
英英释义
例句
1.The phenomenon of secondary electron emission 二次电子发射 is often utilized in particle accelerators.
在粒子加速器中,二次电子发射 secondary electron emission 现象经常被利用。
2.The efficiency of secondary electron emission 二次电子发射 can be influenced by the material properties of the target.
目标材料的特性会影响二次电子发射 secondary electron emission 的效率。
3.Researchers are exploring ways to enhance secondary electron emission 二次电子发射 for improved performance in photomultiplier tubes.
研究人员正在探索增强二次电子发射 secondary electron emission 的方法,以提高光电倍增管的性能。
4.The process of secondary electron emission 二次电子发射 is crucial in the design of many types of electron detectors.
在许多类型的电子探测器设计中,二次电子发射 secondary electron emission 过程至关重要。
5.In scanning electron microscopy, secondary electron emission 二次电子发射 provides high-resolution images of surface structures.
在扫描电子显微镜中,二次电子发射 secondary electron emission 提供了高分辨率的表面结构图像。
作文
Secondary electron emission is a fascinating phenomenon that occurs when high-energy particles, such as electrons or photons, collide with a material surface. This process results in the ejection of lower-energy electrons from the surface of the material. The significance of secondary electron emission (二次电子发射) can be observed in various fields, including material science, semiconductor technology, and even in the study of astrophysical phenomena. Understanding this process not only helps in advancing technological applications but also provides insights into fundamental physical principles.In the realm of material science, secondary electron emission (二次电子发射) plays a crucial role in characterizing the properties of materials. When a material is bombarded with high-energy electrons, the interaction leads to the release of secondary electrons. By measuring the number of these emitted electrons, researchers can infer important information about the material's surface properties, such as its work function, electron affinity, and surface cleanliness. These parameters are essential for developing new materials with tailored properties for specific applications.Moreover, in semiconductor technology, secondary electron emission (二次电子发射) is a critical factor in the performance of devices like transistors and diodes. In these devices, controlling the flow of electrons is paramount, and understanding how secondary electrons are emitted can help engineers design more efficient components. For instance, during the operation of a scanning electron microscope (SEM), the interaction of the primary electron beam with the sample surface generates a significant number of secondary electrons. Collecting these electrons allows for high-resolution imaging of the sample, providing valuable information about its structure and composition.The implications of secondary electron emission (二次电子发射) extend beyond conventional technology. In astrophysics, researchers study cosmic rays and their interactions with planetary surfaces, which can lead to the emission of secondary electrons. This process is vital for understanding the space weathering effects on celestial bodies, influencing everything from the surface chemistry of asteroids to the habitability of exoplanets. By analyzing the secondary electron emissions from these bodies, scientists can gain insights into their histories and the processes that have shaped them over billions of years.In conclusion, secondary electron emission (二次电子发射) is a multifaceted phenomenon with profound implications across various scientific disciplines. Its role in material characterization, semiconductor performance, and astrophysical studies underscores its importance in both practical applications and fundamental research. As technology continues to advance, a deeper understanding of this process will undoubtedly lead to new innovations and discoveries, further bridging the gap between theory and application. Researchers and engineers alike must continue to explore the intricacies of secondary electron emission (二次电子发射) to unlock its full potential and harness its benefits for future advancements.
二次电子发射是一种迷人的现象,当高能粒子(如电子或光子)与材料表面碰撞时,会发生这种现象。这个过程导致低能电子从材料表面被弹出。二次电子发射的意义可以在多个领域观察到,包括材料科学、半导体技术,甚至在天体物理现象的研究中。理解这一过程不仅有助于推动技术应用,还能提供对基本物理原理的深入洞察。在材料科学领域,二次电子发射在表征材料性质方面发挥着至关重要的作用。当材料受到高能电子的轰击时,相互作用会导致次级电子的释放。通过测量这些发射电子的数量,研究人员可以推断出关于材料表面特性的关键信息,例如其功函数、电子亲和力和表面清洁度。这些参数对于开发具有特定应用的定制材料至关重要。此外,在半导体技术中,二次电子发射是晶体管和二极管等器件性能的关键因素。在这些器件中,控制电子流动至关重要,理解次级电子的发射方式可以帮助工程师设计更高效的组件。例如,在扫描电子显微镜(SEM)的操作过程中,主电子束与样品表面的相互作用会产生大量的次级电子。收集这些电子可以实现高分辨率的样品成像,提供关于其结构和成分的宝贵信息。二次电子发射的影响超越了传统技术。在天体物理学中,研究人员研究宇宙射线及其与行星表面的相互作用,这可能导致次级电子的发射。这个过程对理解天体的空间风化效应至关重要,影响从小行星的表面化学到系外行星的宜居性。通过分析这些天体的次级电子发射,科学家们可以深入了解它们的历史以及数十亿年来塑造它们的过程。总之,二次电子发射是一个多方面的现象,对各个科学学科都有深远的影响。它在材料表征、半导体性能和天体物理研究中的作用凸显了其在实际应用和基础研究中的重要性。随着技术的不断进步,对这一过程的深入理解无疑将导致新的创新和发现,进一步弥合理论与应用之间的差距。研究人员和工程师必须继续探索二次电子发射的复杂性,以解锁其全部潜力,并利用其为未来的进步服务。
相关单词