preionized discharge

简明释义

预电离放电

英英释义

Preionized discharge refers to a type of electrical discharge that occurs in a gas where the gas has been partially ionized before the main discharge event, often enhancing the efficiency and stability of the discharge process.

预离子化放电是指在气体中发生的一种电气放电类型,其中气体在主要放电事件之前已经部分离子化,这通常会提高放电过程的效率和稳定性。

例句

1.Engineers are exploring the use of preionized discharge 预电离放电 for better control over combustion processes.

工程师们正在探索使用预电离放电 预电离放电 来更好地控制燃烧过程。

2.The application of preionized discharge 预电离放电 in gas lasers has improved their output power significantly.

在气体激光器中应用预电离放电 预电离放电 显著提高了它们的输出功率。

3.The study concluded that preionized discharge 预电离放电 can enhance the performance of chemical reactors.

研究得出结论,预电离放电 预电离放电 可以提高化学反应器的性能。

4.In the manufacturing process, preionized discharge 预电离放电 helps to create a more uniform coating on surfaces.

在制造过程中,预电离放电 预电离放电 有助于在表面上形成更均匀的涂层。

5.The researchers observed a significant increase in efficiency when using a preionized discharge 预电离放电 method in their plasma experiments.

研究人员在他们的等离子体实验中观察到使用预电离放电 预电离放电 方法时效率显著提高。

作文

In the field of plasma physics, the term preionized discharge refers to a specific type of electrical discharge that occurs in a gas that has been partially ionized prior to the application of a high voltage. This phenomenon is significant because it allows for the creation of plasma at lower energy levels compared to fully ionized discharges. Understanding how preionized discharge operates is crucial for various applications, including lighting, laser technology, and even space propulsion systems.The process begins when a gas, typically noble gases like argon or xenon, is subjected to conditions that cause partial ionization. This can be achieved through various methods such as exposure to ultraviolet light or through the use of a seed discharge, which creates free electrons in the gas. Once the gas is preionized, applying a high voltage across electrodes results in a more efficient discharge, as the existing free electrons facilitate the ionization of neutral gas atoms. This leads to the formation of a stable plasma state.One of the key advantages of preionized discharge is its ability to reduce the threshold voltage required to initiate the discharge process. In traditional gas discharges, a high voltage is necessary to overcome the ionization potential of the gas. However, with preionization, the presence of free electrons lowers this threshold, allowing for more efficient energy consumption. This characteristic is particularly beneficial in applications where energy efficiency is paramount, such as in plasma displays and neon lights.Moreover, preionized discharge can lead to improved stability and control of the plasma. In many industrial applications, maintaining a steady and controllable plasma state is essential. The preionization process helps achieve this by ensuring that there are always enough free charge carriers available to sustain the discharge, even under varying operational conditions. This stability is crucial in processes such as plasma etching in semiconductor manufacturing, where precision is key.Research into preionized discharge is ongoing, with scientists exploring new methods to enhance its efficiency and applicability. For instance, advancements in nanotechnology and materials science may lead to the development of better preionization techniques, potentially broadening the range of gases that can be effectively utilized. Additionally, understanding the fundamental mechanisms behind this type of discharge can pave the way for innovative applications in fields such as environmental science, where plasma technology is being investigated for pollution control and waste treatment.In conclusion, preionized discharge represents a fascinating area of study within plasma physics, offering numerous advantages in terms of energy efficiency, stability, and control. As research continues to evolve, the implications of this phenomenon could extend far beyond current applications, potentially leading to breakthroughs in technology and industry. By grasping the principles and benefits of preionized discharge, we can appreciate its role in shaping the future of plasma applications and their impact on our daily lives.

在等离子体物理学领域,短语预电离放电指的是一种特定类型的电气放电,这种放电发生在气体部分电离的情况下,即在施加高电压之前。这个现象是重要的,因为它允许在比完全电离放电更低的能量水平下创造等离子体。理解预电离放电如何运作对于各种应用至关重要,包括照明、激光技术甚至太空推进系统。这一过程始于当气体(通常是氩气或氙气等惰性气体)受到某些条件的影响,导致部分电离。这可以通过多种方法实现,例如暴露于紫外线光或使用种子放电,这会在气体中产生自由电子。一旦气体被预电离,施加高电压到电极之间就会导致更高效的放电,因为现有的自由电子促进了中性气体原子的电离。这导致形成一个稳定的等离子体状态。预电离放电的一个关键优势是降低了启动放电过程所需的阈值电压。在传统的气体放电中,需要高电压来克服气体的电离势。然而,通过预电离,存在的自由电子降低了这一阈值,从而允许更高效的能量消耗。这一特性在能源效率至关重要的应用中尤为有利,如等离子体显示器和霓虹灯。此外,预电离放电还可以改善等离子体的稳定性和控制。在许多工业应用中,维持稳定和可控的等离子体状态至关重要。预电离过程通过确保在变化的操作条件下始终有足够的自由载流子可用以维持放电,帮助实现这一点。这种稳定性在半导体制造中的等离子体刻蚀等过程中至关重要,其中精度是关键。对预电离放电的研究仍在进行,科学家们正在探索提高其效率和适用性的新方法。例如,纳米技术和材料科学的进步可能会导致更好的预电离技术的发展,潜在地扩大可以有效利用的气体范围。此外,理解这种放电类型背后的基本机制可以为环境科学等领域的创新应用铺平道路,在这些领域中,等离子体技术正在被研究用于污染控制和废物处理。总之,预电离放电代表了等离子体物理学中的一个迷人研究领域,在能量效率、稳定性和控制方面提供了众多优势。随着研究的不断发展,这一现象的影响可能超越当前的应用,可能导致技术和工业的突破。通过掌握预电离放电的原理和好处,我们可以欣赏它在塑造等离子体应用未来及其对我们日常生活影响中的作用。