plasma confinement

简明释义

等离子体约束

英英释义

Plasma confinement refers to the techniques and methods used to contain plasma in a controlled environment, preventing it from coming into contact with the walls of the containment vessel.

等离子体约束是指用于在受控环境中限制等离子体的技术和方法,以防止其与容器壁接触。

例句

1.The ITER project aims to demonstrate the feasibility of plasma confinement for commercial fusion energy.

国际热核聚变实验堆(ITER)项目旨在展示商业聚变能源的等离子体约束的可行性。

2.The success of fusion energy depends heavily on effective plasma confinement.

聚变能源的成功在很大程度上依赖于有效的等离子体约束

3.Achieving stable plasma confinement is one of the biggest challenges in nuclear fusion research.

实现稳定的等离子体约束是核聚变研究中最大的挑战之一。

4.New technologies are being developed to enhance plasma confinement efficiency.

正在开发新技术以提高等离子体约束的效率。

5.Researchers are experimenting with different magnetic fields to improve plasma confinement in reactors.

研究人员正在尝试不同的磁场,以改善反应堆中的等离子体约束

作文

In the realm of nuclear fusion research, one of the most critical challenges is achieving effective plasma confinement. This term refers to the methods used to contain plasma, a state of matter consisting of charged particles, at extremely high temperatures and pressures necessary for fusion reactions to occur. The importance of plasma confinement cannot be overstated, as it directly influences the efficiency and feasibility of harnessing fusion energy as a sustainable power source for the future.To understand plasma confinement, it is essential to grasp the nature of plasma itself. Plasma is often described as the fourth state of matter, alongside solid, liquid, and gas. When gases are heated to high temperatures, they can lose electrons, resulting in a mixture of ions and free electrons. This ionized gas exhibits unique behaviors and is influenced by electromagnetic fields. Therefore, containing this hot plasma without allowing it to touch the walls of the containment vessel is crucial to prevent energy losses and maintain the conditions necessary for fusion.There are two primary methods of plasma confinement: magnetic confinement and inertial confinement. Magnetic confinement utilizes powerful magnetic fields to trap plasma in a designated area, preventing it from contacting the walls of the reactor. The most well-known device for magnetic confinement is the tokamak, a doughnut-shaped chamber that creates a magnetic field to stabilize the plasma. Researchers have made significant strides in this area, but achieving a stable and sustained plasma confinement remains a formidable challenge.On the other hand, inertial confinement relies on compressing small pellets of fuel, typically deuterium and tritium, using lasers or other forms of energy. This method aims to rapidly heat and compress the fuel to achieve the conditions necessary for fusion. While this technique has shown promise in laboratory settings, scaling it up for practical energy production is still an ongoing area of research.The quest for better plasma confinement techniques is driven by the need for clean and virtually limitless energy sources. Fusion has the potential to provide energy with minimal environmental impact, as it produces no greenhouse gas emissions and generates significantly less radioactive waste compared to fission reactors. However, to unlock this potential, researchers must overcome the hurdles associated with maintaining stable and efficient plasma confinement.Moreover, advancements in materials science play a crucial role in improving plasma confinement. The extreme conditions within a fusion reactor can cause significant wear and tear on the materials used for construction. Developing materials that can withstand high temperatures and radiation exposure is essential for the longevity and efficiency of fusion reactors. Innovations in nanotechnology and advanced ceramics may pave the way for more durable reactor components.In conclusion, plasma confinement is a pivotal concept in the pursuit of nuclear fusion as a viable energy source. As scientists continue to explore innovative methods and technologies to enhance plasma confinement, the dream of harnessing the power of the stars may one day become a reality. By investing in research and development in this field, we can move closer to a future where fusion energy provides a clean, sustainable solution to the world's growing energy demands.

在核聚变研究领域,最关键的挑战之一是实现有效的等离子体约束。这个术语指的是用于在极高温度和压力下保持等离子体(一种由带电粒子组成的物质状态)的方法,这对于发生聚变反应是必要的。等离子体约束的重要性不容小觑,因为它直接影响着利用聚变能作为可持续能源的效率和可行性。要理解等离子体约束,首先必须掌握等离子体本身的性质。等离子体通常被描述为第四种物质状态,除了固体、液体和气体。当气体被加热到高温时,它们可能会失去电子,从而导致离子和自由电子的混合。这种电离气体表现出独特的行为,并受到电磁场的影响。因此,控制这种高温等离子体而不让其接触到容器的壁面,对于防止能量损失并维持聚变所需的条件至关重要。等离子体约束有两种主要方法:磁约束和惯性约束。磁约束利用强大的磁场将等离子体困在指定区域,防止其接触反应堆的壁面。最著名的磁约束装置是托卡马克(tokamak),一种环形腔体,通过创建磁场来稳定等离子体。研究人员在这一领域取得了显著进展,但实现稳定和持续的等离子体约束仍然是一个巨大的挑战。另一方面,惯性约束依赖于使用激光或其他形式的能量压缩小燃料颗粒,通常是氘和氚。这种方法旨在快速加热和压缩燃料,以达到聚变所需的条件。虽然这种技术在实验室环境中显示出潜力,但将其扩大以实现实际能源生产仍然是一个持续的研究领域。对更好等离子体约束技术的追求是由于对清洁和几乎无限能源来源的需求。聚变有潜力提供对环境影响极小的能源,因为它不产生温室气体排放,并且产生的放射性废物显著少于裂变反应堆。然而,要解锁这种潜力,研究人员必须克服与维持稳定和高效的等离子体约束相关的障碍。此外,材料科学的进步在改善等离子体约束中起着至关重要的作用。聚变反应堆内的极端条件会对所用材料造成重大磨损。开发能够承受高温和辐射暴露的材料对于聚变反应堆的耐久性和效率至关重要。纳米技术和先进陶瓷的创新可能为更耐用的反应堆组件铺平道路。总之,等离子体约束是追求核聚变作为可行能源的关键概念。随着科学家们继续探索增强等离子体约束的创新方法和技术,利用星星的力量的梦想有一天可能会成为现实。通过在这一领域投资研究和开发,我们可以更接近一个聚变能源为世界日益增长的能源需求提供清洁、可持续解决方案的未来。

相关单词

plasma

plasma详解:怎么读、什么意思、用法