skewness
简明释义
n. 歪斜
英英释义
单词用法
偏度的测量 | |
偏度系数 | |
偏度统计量 | |
评估偏度 | |
高偏度 | |
低偏度 | |
偏度和峰度 | |
数据分布中的偏度 |
同义词
反义词
对称 | 这座建筑的设计展现了完美的对称性。 | ||
一致性 | The uniformity in the data suggests a balanced distribution. | 数据的一致性表明分布是平衡的。 |
例句
1.We need to calculate the coefficient of skewness to measure the degree of deflection.
我们需要计算偏度系数来衡量偏转的程度。
2.Objective To test whether the distribution of normal old peoples subjective well-being scores present positive skewness and what types of items tend to be given more positive responses.
目的考察国内正常老年人主观幸福感的测量结果是否存在正向倾斜,并分析与检验哪类题目更易引起受测者的正向回答。
3.The distribution of WTP for organic food shows a remarkable skewness, ranging mostly between 5-20%, lower than current market price premiums approximately between 20-40% in the world market.
各个研究中得到的支付意愿评价结果呈现出显著的偏态分布,主要集中于5-20%之间,低于各国有机食品相对于传统食品的实际差价20-40%。
4.From the capillary pressure curve morphology, the most samples' capillary pressure curve has not platform segments showing skewness with smaller slanting degrees.
从毛管压力曲线形态上看,大部分样品的毛管压力曲线没有平台段,多呈倾斜状,具偏细歪度。
5.When excavating with parallel association rules, the two data distribution characters, data skewness and workload balance, will affect the validity of pruning.
在进行并行关联规则挖掘时,数据偏斜和工作量平衡这两个数据分布特征影响着剪枝的有效性。
6.Then, we use Skewness Analysis way to show the relationship between engaged behavior and loyalty, responsibility, matchup, performance, satisfaction and diligence in Shanghai knowledge workers.
然后,以上海知识员工为例,通过偏相关分析,从忠诚度、责任度、适配度、绩效度、满意度、勤奋度六个维度研究与敬业行为的相关关系。
7.Particularly, parameters of model can be chosen to match empirically estimated mean, variance, skewness, and kurtosis of the stock return distribution. The model thus has the potential to produce…
特别地,模型的系数可选择得与股票收益分布的实际估计评均值、方差、挠度和峭度相匹配,因而就可能产生出与实际观测的股票收益分布较为一致的期权价格。
8.On this base, the skewness of high-order statistic analysis is used to test and verify the effectiveness of the conclusion. Simulation results further show this method is practicable.
在此基础上,利用高阶统计分析中的斜度概念验证此结论的有效性,并且通过仿真实验进一步说明了此方法的可行性。
9.A positive skewness means that there are more low values than high values in the dataset.
正的偏斜度意味着数据集中低值的数量多于高值。
10.In a normal distribution, the skewness is close to zero.
在正态分布中,偏斜度接近于零。
11.The skewness of the data distribution indicates that it is not symmetrical.
数据分布的偏斜度表明它不是对称的。
12.Analysts often check the skewness of returns to understand market behavior.
分析师通常检查收益的偏斜度以理解市场行为。
13.Understanding the skewness of your data can help you make better predictions.
理解数据的偏斜度可以帮助你做出更好的预测。
作文
In the field of statistics, understanding the distribution of data is crucial for making informed decisions. One important concept that helps statisticians and analysts understand data distributions is skewness. 偏态 refers to the degree of asymmetry observed in a probability distribution. When data is perfectly symmetrical, like in a normal distribution, the skewness is zero. However, in real-world scenarios, data often deviates from this ideal state. This deviation can provide valuable insights into the nature of the data being analyzed.For instance, consider the income distribution in a given population. It is often found that a small number of individuals possess a significant portion of the total wealth, leading to a right-skewed distribution. In this case, the skewness would be positive, indicating that there are outliers on the higher end of the income scale. Understanding this skewness is vital for policymakers who aim to address income inequality. By recognizing the asymmetry in income distribution, they can implement targeted strategies to redistribute wealth more effectively.On the other hand, a left-skewed distribution occurs when there are outliers on the lower end of the scale. An example of this could be the age at which individuals retire. Many people tend to retire around a certain age, but some may retire much earlier due to health issues or personal choices. This results in a concentration of data points on the higher end of the age spectrum, leading to a negative skewness. Understanding such distributions can help businesses and governments plan for future needs, such as healthcare services for an aging population.Moreover, skewness plays a significant role in risk management and financial analysis. Investors often analyze the skewness of asset returns to gauge potential risks and rewards. A positively skewed return distribution indicates that there is a greater probability of achieving higher returns, albeit with fewer occurrences. Conversely, a negatively skewed return distribution suggests that while most returns may be modest, there is a higher chance of experiencing significant losses. This information is invaluable for investors when constructing their portfolios and managing risk.In conclusion, skewness is a fundamental concept in statistics that provides insight into the asymmetry of data distributions. By analyzing skewness, researchers, policymakers, and investors can better understand the underlying patterns and make more informed decisions. Whether it is addressing income inequality, planning for demographic changes, or managing investment risks, recognizing and interpreting skewness is essential for navigating the complexities of data in our world. As we continue to collect and analyze vast amounts of data, the importance of understanding skewness will only grow, highlighting the need for robust statistical literacy in various fields.
在统计学领域,理解数据的分布对于做出明智的决策至关重要。一个重要的概念是偏态,它帮助统计学家和分析师理解数据分布。偏态指的是在概率分布中观察到的不对称程度。当数据完全对称时,例如在正态分布中,偏态为零。然而,在现实世界中,数据往往偏离这一理想状态。这种偏离可以为分析的数据的性质提供宝贵的见解。例如,考虑某一人口的收入分布。通常发现,少数个人拥有总财富的很大一部分,这导致了右偏分布。在这种情况下,偏态将为正值,表明在收入规模的高端存在离群值。理解这种偏态对旨在解决收入不平等问题的政策制定者至关重要。通过认识到收入分配中的不对称性,他们可以实施针对性的策略,更有效地重新分配财富。另一方面,左偏分布发生在低端有离群值的情况下。例如,个人退休的年龄。许多人往往在某个年龄段退休,但由于健康问题或个人选择,一些人可能会更早退休。这导致在年龄谱的高端集中数据点,从而导致负偏态。理解这样的分布可以帮助企业和政府规划未来的需求,例如为老龄化人口提供医疗服务。此外,偏态在风险管理和金融分析中发挥着重要作用。投资者常常分析资产收益的偏态来评估潜在的风险和回报。正偏态的收益分布表明实现更高回报的概率更大,尽管出现的次数较少。相反,负偏态的收益分布表明,尽管大多数收益可能适中,但经历重大损失的可能性更高。这些信息对于投资者在构建投资组合和管理风险时是无价的。总之,偏态是统计学中的一个基本概念,它提供了对数据分布不对称性的洞察。通过分析偏态,研究人员、政策制定者和投资者可以更好地理解潜在模式,并做出更明智的决策。无论是解决收入不平等、规划人口变化,还是管理投资风险,识别和解释偏态对于应对我们世界中数据的复杂性至关重要。随着我们继续收集和分析海量数据,理解偏态的重要性只会增加,这突显了在各个领域增强统计素养的必要性。