pair production

简明释义

电子 空穴对产生

英英释义

Pair production is a process in which energy is converted into a particle-antiparticle pair, typically an electron and its antiparticle, the positron, when a photon or other high-energy particle interacts with matter.

对产生是一个过程,其中能量转化为粒子-反粒子对,通常是电子及其反粒子正电子,当光子或其他高能粒子与物质相互作用时发生。

例句

1.Understanding pair production 对产生 is essential for developing new technologies in particle physics.

理解对产生 pair production 对于开发粒子物理学的新技术至关重要。

2.The phenomenon of pair production 对产生 can lead to the creation of electron-positron pairs.

现象对产生 pair production 可以导致电子-正电子对的产生。

3.In high-energy physics experiments, pair production 对产生 is a crucial process that can be observed when photons collide with heavy nuclei.

在高能物理实验中,对产生 pair production 是一个关键过程,可以在光子与重核碰撞时观察到。

4.The study of pair production 对产生 helps scientists understand the interactions between light and matter.

对产生 pair production 的研究帮助科学家理解光与物质之间的相互作用。

5.During the experiment, researchers measured the energy threshold for pair production 对产生 to occur.

在实验中,研究人员测量了发生对产生 pair production 的能量阈值。

作文

In the realm of particle physics, the concept of pair production plays a pivotal role in understanding how particles are created from energy. This phenomenon occurs when a photon with sufficient energy interacts with a strong electromagnetic field, resulting in the creation of a particle-antiparticle pair. For instance, when a high-energy gamma-ray photon strikes a nucleus, it can produce an electron and its antiparticle, the positron. The energy required for this process is dictated by Einstein's famous equation, E=mc², which indicates that energy can be converted into mass. Therefore, the energy of the incoming photon must be at least twice the rest mass energy of the produced particles to satisfy conservation laws.The significance of pair production extends beyond theoretical discussions; it has practical implications in various fields including astrophysics and medical imaging. In astrophysics, this phenomenon is crucial in explaining certain cosmic events, such as gamma-ray bursts and the behavior of high-energy cosmic rays. When cosmic rays collide with photons in the cosmic microwave background radiation, they can generate electron-positron pairs, influencing the dynamics of these high-energy particles.Moreover, pair production is integral to technologies like positron emission tomography (PET) scans used in medical diagnostics. In a PET scan, a radioactive substance emits positrons, which then encounter electrons in the body, leading to annihilation events that produce gamma rays. Detecting these gamma rays allows for the visualization of metabolic processes in real-time, showcasing the practical utility of the principles behind pair production.Understanding pair production also sheds light on the fundamental symmetries of nature. The existence of antimatter, which is created during this process, raises intriguing questions about the universe's composition. Why is there so much more matter than antimatter? This asymmetry is a central question in modern physics, and studying pair production may provide insights into the mechanisms that govern such phenomena.In conclusion, pair production is not merely a theoretical curiosity but a crucial aspect of our understanding of the universe. From its role in particle physics to its applications in technology, the implications of this phenomenon are vast and varied. As research continues to evolve, the exploration of pair production will undoubtedly lead to new discoveries that enhance our comprehension of the fundamental forces and particles that shape our reality.

在粒子物理学领域,对偶产生的概念在理解粒子如何从能量中产生方面起着关键作用。这一现象发生在一个具有足够能量的光子与强电磁场相互作用时,导致一个粒子-反粒子对的产生。例如,当一个高能伽马射线光子撞击一个原子核时,它可以产生一个电子及其反粒子正电子。这个过程所需的能量由爱因斯坦著名的方程E=mc²决定,该方程表明能量可以转化为质量。因此,入射光子的能量必须至少是所产生粒子的静止质量能量的两倍,以满足守恒定律。对偶产生的重要性超越了理论讨论;它在包括天体物理学和医学成像等多个领域具有实际意义。在天体物理学中,这一现象对于解释某些宇宙事件至关重要,例如伽马射线暴和高能宇宙射线的行为。当宇宙射线与宇宙微波背景辐射中的光子碰撞时,它们可以产生电子-正电子对,从而影响这些高能粒子的动力学。此外,对偶产生是医学诊断中使用的正电子发射断层扫描(PET)技术的核心。在PET扫描中,放射性物质发射正电子,这些正电子随后在体内与电子相遇,导致湮灭事件,产生伽马射线。检测这些伽马射线可以实时可视化代谢过程,展示了对偶产生背后原理的实际应用。理解对偶产生也揭示了自然界基本对称性的奥秘。反物质的存在,即在这一过程中产生,引发了关于宇宙组成的有趣问题。为什么物质远多于反物质?这种不对称性是现代物理学中的一个核心问题,研究对偶产生可能会提供有关支配这些现象机制的见解。总之,对偶产生不仅仅是一个理论上的好奇心,而是我们理解宇宙的一个关键方面。从它在粒子物理学中的角色到它在技术中的应用,这一现象的影响广泛而多样。随着研究的不断发展,探索对偶产生无疑会导致新的发现,增强我们对塑造现实的基本力量和粒子的理解。

相关单词

pair

pair详解:怎么读、什么意思、用法

production

production详解:怎么读、什么意思、用法